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AFIT/GA/ENY/OOM-02 

Abstract 
There exists a need to remotely monitor the structural integrity of large space struc- 

tures without costly manned missions. This work focused on further damage detection 

characterization of the Air Force Institute of Technology's Flexible Truss Experiment 

(FTE). The FTE is intended to be representative of a large space structure. 

Several damage detection algorithms were developed and tested for the FTE using 

112 different damage conditions and the one undamaged condition. The algorithms were 

trained using two frequency response functions (FRFs) from each damage case and then 

tested using the same two FRFs, but from newly acquired data. A data reduction technique 

from the field of speech recognition was adapted for this damage detection application. The 

data was reduced by greater than an order of magnitude, via a discrete, point-by-point, 

integration process in both training and testing. As shifts in both the resonant and anti- 

resonant frequencies were caused by the damage, another damage detection algorithm 

was developed that extracted the resonant and anti-resonant frequencies from the two 

FRFs. This algorithm vectorized the frequencies of the peaks and valleys in the FRFs for 

comparison. 

Over 99% accuracy was obtained using both the adapted speech recognition method 

and the resonant and anti-resonant frequencies method. However, only 44% accuracy was 

achieved by training the resonant and anti-resonant frequencies method with synthetic, 

Finite Element Model generated data, and testing it with measured data. 



I.   Introduction and Background 

1.1 Introduction 

Considerable research and effort over the last few decades has taken place in the field 

of damage detection and damage classification in structures. These structures include, but 

are not limited to, space structures and off-shore oil platforms. It is the former case that 

is of interest in this work. 

Researchers have shown that reliable, fast, and efficient damage identification tech- 

niques based on the vibrational characteristics of structures provide good to moderate 

results. The motivation for this work stems from a need to accurately monitor the in- 

tegrity of a spacecraft structure remotely, i.e., without requiring a manned mission and/or 

a spacewalk, to conduct a visual inspection. In many instances, a visual inspection is 

impossible. For example, a satellite at geostationary orbit cannot be reached via a Space 

Shuttle Mission. 

This thesis explores several damage detection methodologies used on a real structure 

that are based on vibrational differences between undamaged and damaged states. 

1.2 Problem Statement 

Many damage detection methods rely upon mode shape comparison between an 

unknown, structure damage state and an undamaged, baseline state. In the case of the 

mode shapes, several measurements must be taken over the structure. In 1985, Yuen (34) 

proposed a method by which the mode shapes were used to compute the reduction in 

stiffness. In 1992, Oseguada (23) was unsuccessful in his attempt to correlate mode shape 

changes to damage in an offshore platform. 
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Damage detection results based on mode shapes have been moderate and, in the 

second example cited above, poor. More importantly, their inherent reliance upon many- 

measurement locations has the adverse affect of increasing the complexity and weight of 

the spacecraft as a whole, with more output sensors required. Therefore, the number 

of sensors should be minimized even though this will decrease mode shape information. 

For these reasons, mode shapes will not be explored as a means for detecting damage in 

this work. As piezoelectric technologies continue to mature, a more viable mode shape 

technique may be used for space based structural damage detection in the future. 

The motivation for this work stems from a need to improve damage detection meth- 

ods. A method to detect varying degrees of damage is desired. Cobb (5) created an As- 

signed Partial Eigenstructure (APE) algorithm for damage detection on the Flexible Truss 

Experiment (FTE). Slightly damaged cases were tested, and approximately 40% accuracy 

was achieved. Cobb computed natural frequencies and mode shapes based upon eight 

FTE accelerometer measurements to detect damage. Swenson (29) was only able to detect 

significant FTE damage; however, he did so using only two accelerometer measurements. 

This work will attempt to detect varying FTE damage with minimal accelerometer data. 

This would be a significant improvement over the works of both Cobb (5) and Swenson 

(29). 

1.3    Research Objectives 

The objectives of this research are to improve current and develop new damage 

detection methodologies using the Air Force Institute of Technology's (AFIT) FTE. The 

FTE is a six meter tall truss made primarily of aluminum that also contains 32 identical, 

bolt-on, diagonal members made of Lexan that can be easily removed and replaced. A 

more detailed discussion of the FTE will be provided in Chapter II. A portion of the work 

will focus on improving and increasing the damage detection capabilities via the method 

outlined by Swenson (29), which utilizes a data reduction algorithm adapted from the field 

of speech recognition. The other work will be the creation of a new damage detection 

algorithm based upon the measured resonant and anti-resonant frequencies of the FTE. A 
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method based solely upon resonant frequencies will be created and compared to a similar 

method based upon both resonant and anti-resonant frequencies. 

All methods will seek the capability to detect partial damage of the FTE diagonals 

and multiple damaged diagonals, thus representing a more than three fold increase in the 

damage detection capability as compared to the method Swenson proposed (29). It is 

the objective of this work to demonstrate that the damage detection methods proposed 

are viable solutions for remote monitoring of spacecraft structural integrity. However, 

the reader should be aware that the major drawback of the methods proposed are its 

assumption of a known number of likely damage scenarios. In a real structure, an infinite 

number of damage cases are possible, with some more likely than others. 

In another on-going effort, a Finite Element Model (FEM) tuning method is being 

created for the FTE by Jones (17). The purpose of this work is to simulate the FEM 

dynamic behavior as close as possible to the true measured dynamic behavior. Coupled 

with the proposed damage detection algorithms, the FEM can be used to simulate any 

possible damage case and thereby expand the damage envelope that otherwise would not 

be possible with the experimental structure without destructive testing. Assuming the 

FEM generated data is close enough to the real structure data, damage detection pattern 

classifiers can be based and trained on artificially created vibration profiles. This has the 

dual benefit of decreasing lab data acquisition time and increasing the number of possible 

damage cases. Additionally, a FEM that closely resembles the real structure's vibrational 

profile can help ameliorate the problem of assuming a finite number of damage cases. 

The FEM can be modified in a iterative fashion until it closely matches the measured 

vibration profile, assuming, of course, that the FEM itself is accurate. This would provide 

considerable damage anomaly insight to a team of structural engineers trying to diagnose 

structural integrity; however, this type of analysis would not be practical for day-to-day 

spacecraft operations in the field. 
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1.4 Thesis Scope 

This thesis will be limited to development of damage detection algorithms based 

solely upon the different vibrational characteristics of the FTE. Measurements will be 

taken at two locations on the FTE with their axes being orthogonal for 112 possible 

damage cases and one undamaged case, also known as the baseline configuration. 

The damage detection algorithms will be created in such a fashion as to allow any 

person to randomly select any of the 112 damage states to be tested in the experimental 

set-up, which includes the FTE and associated data acquisition equipment. 

1.5 Thesis Outline 

An outline of this thesis is as follows. The remainder of this chapter provides a brief 

description of literature addressing various damage detection methodologies and theories. 

The following is a list of the damage detection methods addressed: 

• Artificial Neural Networks 

• Mode Shape Shifts 

• Natural or Resonant Frequency Shifts 

• Resonant Frequency and Anti-Resonant Frequency Shifts 

Chapter II contains the description of the experimental set-up and how data was gath- 

ered and stored from the FTE. Included in this chapter are physical illustrations of the 

hardware utilized, in addition to their purpose. Chapter III outlines the damage detection 

methodologies developed, including justification for use in this work. In Chapter IV, a 

description of how the FTE was tested and the results of those tests using all damage 

detection methodologies outlined is provided. Finally, Chapter V provides conclusions and 

recommendations. 
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1.6    Structural Damage Detection Methods 

Although damage detection methods vary greatly, most, if not all, rely on the dy- 

namic response of some structure or model in their characterization of the damage status 

of a structure. Figure 1.1 illustrates the overall damage detection processes developed in 

this work, (25). A discussion of the various methodologies found in the literature will be 

presented in this section. 

FRF Measurement 

Parameter 
Measurement 

Reference Training 
Patterns 

Pattern Comparison 

Recognized D amage 
4 

Gather Accelerometer 
Data on Current FTE 

State via SA390 

Figure 1.1     Block Diagram For Damage Detection Pattern Recognition Process 

1.6.1 Artificial Neural Networks. Inspired by the neuronal architecture 

of the brain, an artificial neural network (ANN) is a computational model that is composed 

of simple processors, called neurons or nodes, and numerous connections between them 

(10). These connections are known as weights with the weight being determined by the 

strength of the bond between the two neurons. These neural networks are capable of self- 

organizing and learning. Learning or training of the ANN typically involves adjustment 

of these weights to produce the desired output. For a graphical illustration of ANNs, see 

Swenson (29). 

Due to the layered structure of most ANN's, they are commonly referred to as a 

Multi-Layered Perceptron (MLP), (33). Training of the MLP's is usually conducted in 

what is termed loosely as supervised learning (33). In supervised learning, the MLP 

is 'told' the expected output in addition to the input data. Conversely, unsupervised 

learning occurs when the MLP is not told what the expected output is, and the MLP must 
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determine similarities among the input patterns and determine the weights on its own. 

This supervised and unsupervised learning is an iterative process, and it is continued until 

the desired outcome is produced via back-propagation of the errors through the network 

via neuron interconnection weight adjustment. 

Atalla used ANNs to perform FEM updating and subsequent damage detection on 

both a cantilever beam and a flexible frame structure (4). Atalla's finite element model 

estimated the modal parameters being updated quickly and accurately without the need 

of measuring all degrees of freedom. The technique implemented avoided the use of mode 

shape expansion, and it was designed to be easily incorporated in an adaptive control 

scheme (4). 

In 1991, Kudva, et al. (19) used a back-propagation neural network to identify dam- 

age in a plate stiffened with a 4 X 4 array of bays. Damage was simulated by drilling holes 

of various diameters in the plate at the bay's center. The MLP successfully determined 

the damaged bay, but it had difficulty in predicting the diameter of the hole. The correct 

hole size was diagnosed with only 50% accuracy. 

In 1993, Worden, et al. (32) used a backpropagation neural network to identify 

damage in a twenty-member structure. Complete member removal was used to model 

damage. The ANN was trained with strain data from eight of the members that were to 

be tested for damage identification. The researchers designed a three-hidden-layer ANN 

design with 12, 12, and 8 hidden nodes, respectively. The network was trained with FEM 

generated data, and it was then tested with data from the real structure. Exact accuracy 

numbers were not given, but the researchers claimed that the ANN usually identified the 

damage member. 

In 1993, Elkordy, et al. (10) used a MLP for damage detection of a five-story steel 

frame mounted on a shaking-table platform. The network was trained with changes in the 

vibration spectra, i.e., resonant frequencies, from the undamaged state to the damaged 

state instead of just the absolute values of the spectra. Damage was simulated by reducing 

stiffness from 30 to 70% in the bottom two stories, and the MLP was reasonably successful 

in identification of the damage even when trained with partially inaccurate data samples. 
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Not surprisingly, the amount of training required increased as the data samples became 

more inaccurate. 

In 1994, Stephens and VanLuchene (27) used a backpropagation network to identify 

damage in a one-tenth scale model of a reinforced concrete structure. The researchers 

introduced cracks into the structure. The researchers then used displacement data, dissi- 

pated energy in the structure, and stiffness degradation to train the network. The neural 

network correctly identified damage 78% of the time. In addition, the network was suc- 

cessively implemented for damage detection on a government services building in an area 

prone to earthquakes. 

Leath and Zimmerman (20) used a MLP to identify damage in a four-element, can- 

tilevered beam FEM. The training algorithm developed by the researchers was designed to 

iteratively change the architecture of the network. To this end, a network was created that 

had a minimal number of hidden nodes. This had the effect of exactly fitting the network 

to the data, which would be undesirable if there is noise present. Noisy data tended to 

propagate through the network causing errors. Damage in the model was simulated by 

reducing Young's modulus by up to 95%. The network used the first two bending frequen- 

cies to determine the level of damage in the beam. The training algorithm used by the 

researchers limited the network to consider only the first two bending frequencies. Only 

35% damage detection accuracy was achieved. 

Manning (21) proposed a method based upon active member transfer function charac- 

teristics and artificial neural networks on a 25-bar transmission tower with active members. 

Damage was simulated by reducing the cross-sectional area of a member. Manning trained 

the network with active member transfer function poles and zeros. The MLP consisted 

of 40 inputs, two hidden layers with seven and five nodes, and four outputs. Manning's 

network was able to identify the general area of the damage in the tower, but it was not 

able to identify the degree of damage within 10%. 

The examples cited above utilizing MLP's and others over the last 10 years provided 

the basis by which Swenson (29) tested the Flexible Truss Experiment. Swenson developed 

and tested a MLP in the LNKnet simulation program. Several MLP variations were tested, 
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and the configuration that gave the best damage detection results was used. This MLP 

consisted of 20 input nodes, 25 hidden nodes, and 33 output nodes with only one hidden 

layer. Using data to train the MLP from the FEM generated data that was closest in 

matching the FTE's dynamic behavior, the network was able to identify the damage 54% 

of the time. 

Due to Swenson's limited success with the MLP's on the FTE, and the fact that 

better results were achieved with other methods, MLP's will not be used in this work. 

In addition, the selection of the number of nodes and hidden layers appears to be quite 

arbitrary in the literature cited with no general guidelines in their selection. These design 

factors seem to be system specific and directly correlate with the amount of training and 

damage detection accuracy. 

1.6.2    Modal Analysis Methods. Modal analysis methods have been 

employed in damage detection techniques for over thirty years. Damping factors, resonant 

frequencies, and mode shapes can be found via modal analysis methods. One particular 

method, Eigensystem Realization Algorithm (ERA), will be discussed in Chapter 3. 

1.6.2.1 Mode Shape Shifts. Typically, natural frequencies or resonant 

frequencies can be measured with a resolution of 0.1% in a lightly damped structure, 

whereas, typical mode shape errors are at least 10%, (11). Additionally, mode shapes are 

usually insensitive to damage. As stated previously, mode shapes rely upon many sensor 

locations for measurement. For these reasons mode shape methods will be excluded from 

the discussion that follows on damage detection methods. 

1.6.2.2 Resonant Frequency Shifts. One of the early damage detec- 

tion works occurred in 1977 when Vandiver (30) examined the changes in the resonant 

frequencies associated with first two bending modes and first torsional mode of an offshore 

light station tower. Vandiver simulated the dynamic behavior of the tower and showed 

that the sloshing of fluid in tanks, which changes the tower's effective mass, accounted for 

only 1% change in the natural frequencies of the modes considered. Vandiver also showed 



that removing structural members produced higher resonant frequency changes, thereby 

validating damage detection via changes in the resonant frequencies. 

In 1998, Agneni, et al. (2) utilized natural frequencies and Frequency Response 

Functions (FRF) in their FEM updating procedure of a composite cantilevered beam. This 

structure was also used for damage identification. Damage was simulated and measured at 

various locations in the beam to determine stiffness changes in the FEM updating process. 

Once the researchers felt the FEM model closely matched the behavior of the real structure, 

a damage identification technique was created that utilized changes in both the resonant 

frequencies and the FRF's. Moderately good results were obtained, again proving resonant 

frequency shifts can be used in damage detection. 

James, et al. (16) developed a damage detection procedure for NASA's Vertical Sta- 

bilizer Assembly (VSA) used on the space shuttle by calculating the first Ritz Vectors that 

were derived from the FRFs. For more information on Ritz Vectors, consult Meirovitch 

(22). Nominal, undamaged, operating, FRF bounds were computed for the VSA. Damage 

was characterized by deviations from these bounds. The Ritz Vector, derived from FRF 

data, served to reduce the amount of data, while at the same time retaining the unique 

state of the VSA, i.e., damaged or undamaged. Eight different damage cases were mod- 

eled. Exact accuracy numbers were not provided, but the researchers claim their FRF 

based approach is sensitive to damage. Another aspect of this research showed that the 

accelerometer on the extreme tip of one of the structure's fins showed the most variability 

in its FRFs. It also makes intuitive sense that the most extreme points will display more 

dynamic variability when the structure is damaged. 

Williams et al. (31) used a FRF based approach for damage detection on a steel 

frame. Natural frequencies were extracted within 0.15% accuracy for the structure. The 

researchers found that using percentage changes in the natural frequencies yielded better 

damage detection results than those obtained using absolute changes in natural frequencies. 

Higher frequency modes would dominate the case where absolute changes were used. When 

percentage changes in frequency were used, the lower frequency modes made more of a 

contribution to the overall damage profile. The researchers were able to achieve at least 

95% damage detection accuracy. 
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A Frequency Response Function Assignment Method was used by Schulz, et al. (26) 

for damage detection on a model of an 18 member, simply-supported, truss. The re- 

searchers began with an analytical model of the truss that was tuned using the measured 

natural frequencies. Tuning is the process by which the analytical model is adjusted until 

its dynamic response, which in this case is manifested by the FRF, matches the measured 

dynamic response. After tuning, damage was identified via changes in the damping and 

stiffness matrices. On the real structure, this technique would require the use of a large 

number of sensors, or a large movable sensor system. In testing of the model, the re- 

searcher's were able to successfully diagnose damage (100%) if data from all nodes in the 

immediate vicinity of the damage was used. Otherwise, the damage was misclassified as 

being spread over the entire structure. 

1.6.2.3    Resonant and Anti-Resonant Frequency Shifts. Afolabi 

(1) proposed an anti-resonance technique for detecting damage in a modeled cantilever 

beam. An anti-resonant frequency occurs when the magnitude of the frequency response 

approaches zero for a degree of freedom. An anti-resonant frequency can be seen at ap- 

proximately 13.8 Hz in the FTE's undamaged configuration, see Figure 1.2. 

The idea behind Afolabi's research is that anti-resonant frequencies vary with mea- 

surement location, whereas, resonant frequencies do not vary with measurement location in 

any one particular damage state. Although a damage detection technique was not created, 

Afolabi simulated local loss of stiffness and mass. In both cases, it was shown that the 

resonant frequencies did not change at various measurement points along the beam. The 

anti-resonant frequencies did change, as expected, at points away from the damage, but 

they did not change at the point where damage occurred. Afolabi (1) showed that changes 

in mass and/or stiffness at a certain location do not change the receptance, or acceleration 

at that point; therefore, the anti-resonant frequency is insensitive to changes in mass and 

stiffness. 

The research above shows that both FRF, and resonant & anti-resonant frequency 

changes are a viable means for damage detection in real structures. FRFs will be gathered 

from several configurations of the FTE. This measured FRF data will form the basis for 
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Figure 1.2     FTE Undamaged, X-Direction FRF 

pattern classifiers that will be developed and tested for accuracy in damage detection. If 

the pattern classifiers prove successful from data trained by the real measured data, the 

pattern classifiers could be trained with synthetic FTE FRFs generated by a FEM and 

tested on the real structure. Jones (17) is developing a high-accuracy FEM of the FTE. 

The whole point in developing an accurate FEM is to eliminate the burden of gathering 

real FRF data from the FTE and to thereby train the damage detection pattern classifiers 

with synthetic data. 
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II.   Experimental Setup & Data 

Acquisition 

2.1 Introduction 

This chapter focuses on the test specimen, the Flexible Truss Experiment, and its 

associated test equipment. The experimental setup will be discussed in detail along with 

how the vibration data (FRFs) were generated, gathered, and saved. 

2.2 Experiment Hardware 

The following sections discuss the FTE and the equipment used to gather the FTE's 

dynamic response. 

2.2.1 Flexible Truss Experiment. The six-meter FTE came from the 

Wright Laboratories Large Space Structures Technology Program, where it was used as a 

testbed for active vibration control (13). The original FTE used by Wright Laboratories 

was 12 meters long and consisted of four, 3-meter long sections with four bays per section. 

Due to facility constrains, two sections were removed when the structure was brought to 

the Air Force Institute of Technology (AFIT). The FTE is a truss comprised of welded, 

hollow, aluminum alloy members. In addition to the aluminum members, there are 32 

bolt-on, Lexan diagonal members-four diagonal members per bay. Figure 2.1 displays a 

typical FTE bay. 

The FTE is bolted to a 1" thick aluminum plate at its base. The aluminum plate, 

in turn, is bolted to the concrete floor with five large bolts. These bolts are secured with 

fasteners commonly referred to as spreaders. Figure 2.2 shows the aluminum plate and 

fasteners. 

2.2.2 Electromagnetic Shakers. Two electromagnetic shakers, shown in 

Figure 2.3, were used simultaneously at the top of the FTE to excite it in two mutually 
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Figure 2.1     Typical FTE Bay 

orthogonal directions. Swenson (29) found that leaving both actuators on, as opposed 

to operating them separately, resulted in no shift in modal frequencies greater than 0.25 

Hertz, nor were there any changes in amplitudes. Leaving both actuators on halved the 

data acquisition time during the experiment. The shakers were bolted directly to the top 

of the FTE. Although an external excitation mechanism is desirable in dynamic testing 

and for finite element modeling analysis purposes, it was felt that mounting the shakers 

directly to the structure would be typical in the design of a large space structure. 

2.2.3 Accelerometers. Mounted to the FTE directly below, and aligned 

with the two electromagnetic shakers were two single axis Sunstrand Q-Flex® accelerom- 

eters. These accelerometers offer single axis measurement due to its precision made quartz 

components (28). Figure 2.4 shows the accelerometer placement on the FTE and their 

proximity to the shakers. 
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Figure 2.2     FTE Aluminum Base Plate 

2.2-4     Scientific-Atlanta Pro Series Dynamic Signal Analyzer. 

The Scientific-Atlanta Pro Series Dynamic Signal Analyzer, SA390, is an easily configurable 

eight channel analyzer that allows for live acquisition, analysis, and display of waveform 

signals. The SA390 generated the electromagnetic excitation signals, and it acquired both 

accelerometer outputs. 

The SA390, in conjunction with a power amplifier, was configured to provide contin- 

uous white noise to both shakers at a setting of 2220 mV (root mean squared) amplitude. 

Only frequencies below 100 Hz are of interest; therefore, the accelerometer sampling fre- 

quency was set to 256 Hz to prevent aliasing. Inman (14) describes aliasing to occur when 

the sampling rate is set too low to capture the details of the analog signal, and the re- 

sulting digital representation will cause high frequencies to appear as low frequencies. In 

order to recover a signal from its digital samples, the signal must be sampled at least twice 

the highest frequency in the signal, and experience dictates a sampling rate 2.5 times the 
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Figure 2.3     FTE Electromagnetic Shaker 

highest frequency is optimal (14). To further eliminate aliasing, a low-pass, 100 Hz filter 

was applied to the signal before it was sent to the shakers. 

In addition to aliasing, the SA390 was configured to reduce possible frequency leakage 

of the accelerometers. Inman (14) describes leakage as the phenomenon that occurs when 

the signal is cut off at any integral multiple of its period. For signals that contain many 

different frequencies, this is a problem. This may result in signals being cut-off mid- 

period. Erroneous frequencies would then appear in the digital representation, because 

the Digital Fourier Transform of the finite-length signal assumes the signal is periodic 

(14). The net result is that the actual frequencies leak into a number of fictitious ones. 

This leakage phenomenon can be improved via windowing the original time domain signal. 

The time domain signal is multiplied by a window function, which forces the signal to be 

zero outside the sampling period (14). A Hanning window was used with 90% overlap to 

reduce leakage. This configuration produced good FRFs; if good results were not obtained, 

the overlap could have been reduced to yield better FRFs. However, a significant increase 

in computational time would have been realized with a reduction in overlap. More data 

would be discarded in the overlapping process. Therefore, additional data would have to 

be gathered, thus increasing acquisition time. 
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Figure 2.4     Shakers and Accelerometer 

To incorporate overlapping, the SA390 was configured to perform a new analysis on 

a segment of data in which only a portion of the signals has been updated (some old data, 

some new data). It took from four to seven seconds to gather 400 discrete, FRF data 

points from 1024 time domain data samples. Another FRF was computed and averaged in 

with the first via overlapping. This significantly reduced the time needed to compute 100 

averages. The overlapping process allowed 36 new data points to be added and 36 of the 

oldest data points to be dropped from the previous sample for the next FRF computation 

(29). This resulted in 100 averages being computed in 18 seconds. 

The output of the two accelerometers was conditioned and fed into the SA390 where it 

could be displayed. The SA390 was configured so that the Frequency Response Functions, 

accelerometer output voltage divided by the excitation force voltage, was displayed. The 

electromagnetic shakers provided approximately 0.2 pounds offeree per applied volt (12). 

The time domain signals were converted into the frequency domain via the Fast Fourier 

Transform. Figure 2.5 illustrates the setup. 
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Figure 2.5     Overall System Setup (29) 

2.3    Data Acquisition 

The SA390 was used to drive the electromagnetic shakers and gather accelerometer 

data. The SA390 is a versatile, 486 based PC operating on Microsoft® Windows™ 3.1. 

The SA390 is shown in the bottom right of Figure 2.6 along with other data acquisition 

hardware. 

The SA390 was configured in such a way as to allow Matlab™ access and control of 

the SA390. A Matlab™ m-file was created that told the SA390 when to begin acquiring 

data and to save the data in a specified format that could be easily read by Matlab™ for 

further analysis. Utilizing the Dynamic Data Exchange capability between the SA390's 

data acquisition software and Matlab™ facilitated the gathering of data. 
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Figure 2.6     Experiment Data Acquisition Setup 

One FRF from 0-100 Hz took approximately four to seven seconds to measure. One 

hundred FRF's were gathered for each damage case, of which there were 112, plus one 

undamaged case for a total of 113 different cases. There were 14 damage cases simulated 

for each bay. It took approximately 15 minutes to gather 100 FRFs for one damage class. 

Four hundred frequency data points were computed from 1,024 time domain samples via 

the Fast Fourier Transform described previously. This reduced the probability of leakage 

and aliasing. 

Exactly 22,600 FRF's were gathered from the FTE in various states of simulated 

damage. Damage was simulated in the FTE in the following ways: 

• Complete removal of each diagonal 

• Removal of each diagonal & replacement with a partially damaged diagonal 

• Complete removal of all two diagonal combinations in each bay 
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Figure 2.7 and Figure 2.8 show an undamaged and damaged diagonal. As can be seen, the 

partially damaged diagonal is approximately a 50% reduction in cross-sectional area. The 

latter two damaged cases listed above were not addressed by Swenson (29). The other two 

damage cases were added, because it was felt these are also very likely damage scenarios, 

especially in the case of partial damage. 

Figure 2.7     Undamaged FTE diagonal 

Figure 2.8      Partially Damaged FTE Diagonal 

After the 22,600 FRF's were gathered, they were used to train pattern classifiers. 

These pattern classifiers would then be utilized to identify damage in the FTE given an 

FRF of the FTE from some unknown damaged or undamaged state. The pattern classifier 

development and theory will be discussed in Chapter 3, and the results of testing the 

pattern classifiers will be presented in Chapter 4. 
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III.   Damage Detection Development 

3.1 Introduction 

Two different damage detection methodologies will be presented in this chapter. The 

first method relies on a data reduction and feature technique commonly used in the field of 

speech recognition. The second method extracts resonant and/or anti-resonant frequencies 

of the FTE in different states of damage. Although they are considerably different, both 

methodologies rely on the same FRF data for all of the damage cases and for training of 

the pattern classifiers, or damage detection algorithms. 

3.2 Speech Spectra Method 

The speech spectra method developed is a data reduction technique that is a deriva- 

tive of the isolated word recognition problem based upon Hidden Markov Model (HMM) 

theory. Rabiner, et. al (24) define HMM as a doubly stochastic process with an underly- 

ing process that is not directly observable, but, instead, it can only be observed through 

another set of stochastic processes that produces the sequence of observed symbols. 

A front-end signal processing tool is generally needed in speech recognition. Two, 

typical processing tools, identified by Rabiner, et. al (25), are the bank-of-filters model 

and a linear predictive coding model. The bank-of-filters signal processing tool will be 

the basis for the damage identification in this work. Instead of looking at frequencies of 

100-3000 Hz typical for telephone quality signals (25), frequencies below 100 Hz will be 

used in this work in analyzing the FTE. 

The usual choice in filter banks for speech recognition is the uniform filter bank 

(25). However, Colombi (6) showed that non-uniform or nonlinear filter banks empirically 

improve speech recognition performance. Davis, et.al (8) stated that since there is a known 

variation of the ear's critical bandwidth with frequency, filters are spaced linearly at low 

frequencies and logarithmically at higher frequencies. On a mel-frequency scale, the filters 

are spaced linearly according to Equation 3.1. The mel-frequency scale is based upon the 
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critical band scale associated with speech (25). The spacing of the filters along the mel- 

frequency scale is based on perceptual studies, which is intended to select frequency bands 

that give equal contribution to speech articulation (25). In addition, studies have shown 

that human frequency perception of sounds does not follow a linear scale (25). 

Mel{f)   =   2595Zo£io(l + ^) (3-1) 

y(n)   =   50(10n*s/2595 - 1) (3.2) 

where 

/ = discrete frequency in Hz 

50 = linear filter cut-off, i.e., 50 Hz on a normal scale 

y(n) = center frequencies for each n filter on analog scale 

n = l,2,...,n (filter index, 20 filters in this application ) 

s — spacing of filters on mel-scale (50 mels) 

The filters used in this work were linearly spaced up to 50 Hz and logarithmically 

spaced from 50 to 100 Hz on the analog frequency scale. This filtering scheme was used 

for two reasons. First, linear filter spacing at lower frequencies and logarithmic after, 

proved successful in speech recognition research by Colombi (6), with the obvious exception 

that frequencies far greater than 100 Hz were of interest in speech identification. More 

importantly, it was felt that more noise was being realized at higher frequencies than at 

lower ones in the FTE. A linear filter spacing at lower frequencies would provide more filters 

at lower frequencies, thereby resulting in better resolution there than at higher frequencies. 

It was felt this configuration would lead to better damage detection results. 

A linear weighting function was created for each filter, because the filters chosen 

were triangular. After determining the number of filters (which will be discussed later), 

the analog frequency limits, i.e., the lower, center, and upper analog frequencies of each 
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linear filter, were determined via Equation 3.2, given a filter spacing of 50 on the mel- 

frequency scale. The center frequency for the first filter was 50 mels, and all subsequent 

center frequencies were 50 mels greater than the previous center frequency. Equation 3.2 

converts the center frequencies on the mel-scale back to the analog scale. The lower and 

upper frequencies for the first filter on the mel-scale were 0 and 100, respectively. Similar 

to the center frequencies, all subsequent lower and upper frequencies were 50 mels greater 

than the previous lower and upper frequencies. The number of weights per filter equaled 

the number of discrete FRF data points. On the mel-frequency scale, the area under each 

filter is unity. The filter weights were then multiplied by the raw FRF frequency domain 

data gathered by the SA390 via a fast fourier transform of the time domain data. A total 

of 20 triangles or filters was used for each of the two accelerometer FRFs. Swenson (29) 

had used 10 filters, but early attempts to duplicate the results obtained by Swenson were 

unsuccessful. In addition, this work attempted to create a damage identifier capable of 

detecting more damage cases, including partially damaged member configurations. For 

these reasons, it was felt that 20 filters would increase the resolution and capability of 

the damage identifier. This multiplication of the FRF data and the filters represents a 

discrete integration. The output of these filters are referred to as Mel-Frequency Spectral 

Coefficients (MFSC) in the field of speech analysis. The filters used in this thesis can be 

seen in Figure 3.1. 

With these filters, two, 400 data point FRFs are reduced to two, 20-point vectors, a 

reduction of 95% resulting in a l-by-40 size vector. This has the effect of reducing both 

the amount of data and computation time associated with the pattern classifier. 

Once this data reduction technique had been accomplished with the triangular filters, 

a Discrete Cosine Transform (DCT) was applied to the MFSCs. The DCT is a common 

tool used in speech signal processing for data reduction. Jain (15) defines the N-by-N DCT 

per Equations 3.3 and 3.4 for discrete, integer k. In our application, N is the length of the 

FRF data, which is 400 discrete, data points. 

c(k,n)=;-±= (3.3) 
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for 

Figure 3.1     Triangular Filters 

jfc = 0, 0<n<N - 1 

IT      7r(2n + l)fe 
c(k,n) = J -cos       2iV (3.4) 

for 

1 <fc< JV-1, 0<n<iV-l 

Some properties of the DCT are as follows (15): 
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The cosine transform, C (matrix of c(ft, n)), is real and orthogonal: 

cr1 = cT (3-5) 

• The cosine transform is a fast transform. 

• The cosine transform has excellent energy compaction for highly correlated data. 

Equation 3.6 illustrates the DCT used in this work (6), which is different than the DCT 

described by Jain (15). 

ci = \ll^J2mJcos[lf(j-0-^ 
i=i 

(3.6) 

where 

rrij   =   Mel-Frequency Spectral Coefficients (MFSCs) 

N   =   Number of MFSCs 

The MFSCs are referred to as Mel-Frequency Cepstral Coefficients (MFCC), once the DCT 

is applied. As stated previously, the MFSCs are the product of the raw FRF data and 

the linear weights. The DCT both decorrelates and orthogonalizes the data. The above 

process is illustrated in Figure 3.2, starting with the time domain data and ending with 

the MFCCs. 

Measured Time 
Domain Data from 

Accel er ometers 
—> 

FFT for Frequency 
Domain Conversion 

i ' 

Non-Uniform Filter 
Banks to Produce 

MFSCs 
—* 

Apply Discrete Cosine 
Transform to Produce 

MFCC's 

Figure 3.2     Data Reduction Process via Speech Spectra Method 
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The process outlined in Figure 3.2 was used to train the pattern classifiers. Training 

will be discussed in subsequent sections in this chapter. In addition, this process will be 

used when reducing the data associated with a unknown or test FTE damage configuration. 

This test vector, l-by-40 long, will be compared to all other damage cases to determine 

the unknown, damaged state in the FTE. 

3.3    Damage Detection via Shifts in Resonant and Anti- 

Resonant Frequencies 

The speech spectra method outlined above is a very effective data reduction tech- 

nique. However, a method utilizing modal parameters, i.e., natural frequencies, mode 

shapes, etc., was sought since these modal parameters are well understood and are of 

physical significance in any structure. To illustrate these frequency shifts due to damage, 

the Eigensystem Realization Algorithm, or ERA, was executed on finite element models 

of the FTE in the following configurations: 

• Undamaged 

• Diagonal 1 Removed 

• Diagonal 1, 50% damaged 

ERA provides considerable insight into some of the modal parameters of the FTE. 

Following a discussion of ERA and ERA results on the FTE, a description of the resonant 

and anti-resonant frequencies damage detection algorithm development will be provided 

in this section. Finally, an example will be provided to illustrate the resonant and anti- 

resonant frequency algorithm. As will be seen, this algorithm development required several 

iterations before suitable parameter extraction and case comparison techniques were found. 

3.3.1     Eigensystem Realization Algorithm. Before discussing ERA 

testing and results on the FTE, a brief mathematical description shall be provided. As 

discussed in Chapter I, natural frequency shifts have been used to determine whether or 

not damage exists in a structure. ERA will show these shifts in the FTE. 
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ERA starts with a finite dimensional, discrete-time, linear, time invariant, state-space 

description (18) as given in the following equations: 

x{k + l)    =   Ax(k)+Bu(k) 

y(k)    =   Cx(k) 

(3.7) 

(3.8) 

where 

x = an n-dimensional state vector 

u = an m-dimensional control input 

y = a p-dimensional output vector 

A,B,C = the state, contol, and output matrices 

k = the integer sample indicator 

The discrete time, unit-impulse response, Y(k), of the system described in Equations 3.7 

and 3.8 is referred to as the Markov parameter (18), as illustrated in the following equation: 

Y(k) = CAK~lB (3.9) 

The Markov parameters can then be used to define a larger matrix of measurements, 

Hij(k), for any i and j. Hij(k) is also known as the Hankel matrix. 

/     Y(k) Y(k + 1) 

Y{k + l)      Y(k + 2) 

Hij(k)    = 

Y(k + j)     \ 

\Y(k + i)   Y(k + i + l)   ...   Y(k + i + j)J 

OiA
k-1Ri 

(3.10) 

(3-11) 
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where 

Oi   =   is the observability matrix 

C 

CÄ 

A' 

B' 

CAH 

i, j    =   number of rows and columns, respectively 

Rj   =   is the controllability matrix 

B'   A'B'   ...   A'* 

,AAt 

/■At 

eAadaB 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

ERA is based on a singular value decomposition of the Hankel Matrix. The eigenvalues, Aj, 

of the continuous time state matrix, A, are found from the eigenvalues of A' per Equation 

3.16. 

A,-    = 

A'    = 

InAj 
At 

the eigenvalues of A' 

(3.16) 

An ERA Matlab™ m-file created by Mr. Joseph Hollkamp of the Air Force Research 

Laboratory (AFRL) was used. 

ERA was utilized for better modal resolution associated with natural frequency shifts, 

because these frequency shifts would indirectly form the basis of the proposed damage de- 

tection algorithm. The m-file requires the user to input the number of rows and columns 

used in the Hankel matrix analysis. At a minimum, it is recommended that the num- 

ber of columns be at least twice the number of modes expected (7).  Additionally, more 
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columns should be used if the data is noisy. Typically, it is recommended that the number 

of rows be two or three times the number of columns to obtain satisfactory results (3). 

Once the Hankel matrix is formed, the m-file algorithm factorizes it via a singular value 

decomposition (7). 

To illustrate the frequency shifts, ERA analysis was conducted on the FTE in three, 

different configurations, as discussed previously in this section, using Finite Element Model 

generated data. Figure 3.3 illustrates the Frequency Response Functions for each of the 

cases listed above out to 60 Hz. ERA analysis was performed on these FRFs, and the 

results are illustrated in Tables 3.1, 3.2, and 3.3. 

CD 
2. 
CD -a - 

c ■ 
CO 
CO 

DO ;o. 
CD 

T3  ■ 
3 

'c ■ 

CO 

10 20 30 
Frequency (Hz) 

40 50 60 

30 
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Figure 3.3     FTE Frequency Response Functions, x-Direction Accelerometer 
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Table 3.1     ERA Results For Undamaged FTE 

Natural Frequency Frequency(Hz) EMAC(%) 
ist 7.80 98.02 
nnd 24.65 90.28 

3rd 33.89 99.51 
zjtti 49.90 97.45 
5tn 54.28 92.67 

Table 3.2     ERA Results For Diagonal 1 Removed 

Natural Frequency Frequency(Hz) EMAC(%) 
I St 7.41 99.84 
nnd 11.08 94.57 

3rd 20.08 78.94 
4*ft 23.11 85.18 

5th 32.68 92.67 
Qth 35.08 90.63 
jttl 53.18 97.94 

Tables 3.1, 3.2, and 3.3 illustrate the shifts in frequency in addition to different num- 

bers of natural frequencies from one damage state to the next. We conjecture that the 

modes measured from the y-direction accelerometer are manifested more in the x-direction 

in some damage cases than others. This validates the assumption of the uniqueness of 

differing damage states, which is the basis for damage detection. Extended Modal Assur- 

ance Criterion (EMAC) is a measure of the degree of confidence that the predicted natural 

frequency is actually a natural frequency, or a mode. If ERA produces a frequency with an 

EMAC greater than 85%, we can safely say that the frequency is a resonant frequency, or a 

mode (3). The only evident drawback in this analysis is the inherently lower EMAC values 

associated with closely spaced modes, as can be seen with Diagonal 1 removed. Also of 

interest is ERA's inability to detect the apparent 22 Hz resonant frequency associated with 

the undamaged configuration. Several different size configurations of the Hankel matrix, 

i.e., number of rows and columns, were unsuccessfully attempted to capture this resonant 

frequency. Poor ERA resolution, and close proximity to the 24.5 Hz resonant frequency 

probably contributed to this resonant frequency not being detected. 
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Table 3.3     ERA Results For Diagonal 1 50% Damaged 

Natural Frequency Frequency (Hz) EMAC(%) 
I St 7.75 99.89 
<ynd 23.87 85.35 

3rd 33.61 96.58 
4th, 48.73 93.65 

5th 53.88 97.79 

3.3.2 Resonant and Anti-Resonant Damage Detection Algorithm 

Development. Once it was shown via ERA the extent to which the natural fre- 

quencies shifted in different damage cases, a Matlab™ m-file was written that extracted 

the resonant frequencies, which correspond to the peaks in the FRF plots. In addition to 

extracting the natural frequencies, the m-file extracted the local peaks in the FRF magni- 

tude spectra plots that are not necessarily natural frequencies. In most cases, these local 

peaks are modes associated with the other orthogonal Degrees of Freedom (DOFs) that 

crept into the sensor response. It was not possible to configure the accelerometers such 

that a mode would only be seen in one accelerometer and not the other accelerometer. 

Therefore, these smaller peaks at a particular frequency would be evident in the FRF of a 

DOF that should not respond to that mode. This additional information was used to retain 

saliency of the data for each of the damage cases. These smaller peaks could be unique 

to a specific damage case. The algorithm was also capable of extracting the anti-resonant 

frequencies and local minima. Damage detection results using resonant frequencies only 

will be compared to those using both resonant and anti-resonant frequencies in Chapter 

IV. 

The first step in the creation of this algorithm was to define frequency ranges in 

which the resonant frequencies could be stored in a consistent manner from one damaged 

state to the next, so they could be compared for damage detection. This was an iterative 

task, because some of the resonant frequencies were closely spaced. The FRF magnitude 

spectra was analyzed in 11 data point intervals, starting from 4 Hz and ending at 54 Hz. 

This corresponds to 200 discrete data points with the magnitude being known at every 

0.25 Hz increment. The maximum value was found in that 11 point, 2.50 Hz interval. For 
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example, the algorithm would analyze magnitudes from 4.00 Hz to 6.50 Hz. The maximum 

value in that range would be compared to the maximum magnitude value from 4.25 Hz 

to 6.75 Hz. If the maximum value from 4.00 Hz to 6.50 Hz was less than the maximum 

value from 4.25 Hz to 6.75 Hz, it was discarded. If not, that maximum value was retained 

and repeatedly compared to subsequent 11 point intervals. That maximum value would 

then be classified a resonant frequency if it was still a maximum value when the 11 point 

magnitude window moved past that particular magnitude data point. 

An identical process was accomplished to find the anti-resonant frequencies with 

the obvious difference being that instead of analyzing the maximum values, the minimum 

values were found. 

Once all the resonant and anti-resonant frequencies were found, a method to organize 

these frequencies in a consistent manner was needed. This was necessary due to there being 

unequal numbers of resonant and/or anti-resonant frequencies from one damaged state to 

the next, as illustrated by ERA. By some trial and error, the resonant and anti-resonant 

frequencies were arranged in 2 Hz intervals. For example, if there was a resonant frequency 

greater than or equal to 4 Hz and less than 6 Hz, it would be stored in the first element in 

a vector comprised of resonant and anti-resonant frequencies. If there was not a resonant 

frequency greater than or equal to 4 Hz and less than 6 Hz, a zero would be stored in the 

first element of the vector. It turned out that, in all the damage cases, consecutive resonant 

and anti-resonant frequencies were never closer than 2 Hz apart. Coupling this with the 

11 point intervals described above produced the best results on the measured FTE data. 

Anything less than 11 data point intervals produced spurious resonant and anti-resonant 

frequencies. Any future attempt to utilize this method on a different structure would 

probably require a different customization, and no method for automating this process 

was attempted. Figure 3.4 illustrates this process. 

An example follows that is intended to provide the reader with a better understanding 

of the damage detection algorithm discussed previously. We begin with the average of 10, 

400 data point FRFs for both the x and y direction accelerometers, shown in Figure 3.5. 
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Figure 3.4     Resonant & Anti-Resonant Frequencies Algorithm Development 

As seen in Figure 3.5, there is a clearly defined resonant frequency at approximately 

6.5 Hz (x-accelerometer). This example will show how the algorithm proceeded to deter- 

mine that 6.5 Hz was a resonant frequency. As mentioned previously, frequencies will only 

be analyzed from 4 to 54 Hz, in 11 discrete data point intervals. Analyzing data from 4 

to 54 Hz, instead of 0 to 100 Hz, halved the amount of data to be analyzed. Starting at 4 

Hz, and ending at 9.0 Hz, Table 3.4 illustrates the successive intervals used in the analysis 

of the 6.5 Hz resonant frequency. 

As Table 3.4 indicates, the magnitude of the resonant frequency at 6.5 Hz was greatest 

throughout intervals 1 through 11. If the magnitude at 9.0 Hz had been greater than 9.7 

dB, then the algorithm would simply discard the resonant frequency at 6.5 Hz and retain 

the one at 9.0 Hz. All 11 data point intervals following 9.0 Hz would then be analyzed 

in an identical fashion. This procedure was continued to determine the remainder of the 

resonant & anti-resonant frequencies in both the x and y direction FRFs. 

3.4    Damage Detection Training 

Pattern Training is defined by Rabiner (25) to occur when one or more test patterns 

corresponding to speech sounds of the same class are used to create a pattern representative 

of the features of that class. The resulting pattern is typically called a reference pattern. 

The pattern training accomplished in this work is an adaptation of Rabiner's method, since 

we are interested in the FRF spectra rather than those of speech. 
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Figure 3.5     Accelerometer FRFs for Diagonal 16 Removed 

Training was accomplished in this work with 100 FRFs per damage class. This was 

done slightly different between the speech spectra method, and the resonant and anti- 

resonant frequency method. 

Training the speech spectra algorithm was accomplished in the following, easily coded 

manner. First, all of the 100 FRFs for a particular damage class were reduced via the 

method outlined in Figure 3.2. Second, a matrix of means was calculated from the resulting 

orthogonal MFCCs, one mean or average per damage class. Finally, the MFCCs were used 

to compute covariances for each of the damage class vectors. These covariances, which 

are the square of the standard deviations, are then used to find the standard deviations. 

Two matrices resulted from this training. One matrix contained all the averaged MFCCs, 

with each column representing a different damage case. The second matrix contained all 

the averaged covariances, arranged with each column representing a different damage case. 

Figure 3.6 illustrates this training process. 
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Table 3.4     Algorithm Determination of 6.5 Hz Resonant Frequency 

Interval Frequency (Hz) and Magnitude (dB) Values 

lst(Hz) 4.0 4.25 4.5 4.75 5.0 5.25 5.5 5.75 6.0 6.25 6.50 

Is* (dB) -23.4 -21.6 -20.0 -18.4 -15.8 -12.8 -9.7 -7.2 0.0 5.4 9.7 

2nd (Hz) 4.25 4.5 4.75 5.0 5.25 5.5 5.75 6.0 6.25 6.50 6.75 

2nd(dB) -21.6 -20.0 -18.4 -15.8 -12.8 -9.7 -7.2 0.0 5.4 9.7 0.4 

3rd (Hz) 4.5 4.75 5.0 5.25 5.5 5.75 6.0 6.25 6.50 6.75 7.0 

3rd (dB) -20.0 -18.4 -15.8 -12.8 -9.7 -7.2 0.0 5.4 9.7 0.4 -5.9 

4tft(Hz) 4.75 5.0 5.25 5.5 5.75 6.0 6.25 6.50 6.75 7.0 7.25 

4t/l(dB) -18.4 -15.8 -12.8 -9.7 -7.2 0.0 5.4 9.7 0.4 -5.9 -8.1 

5*ft(Hz) 5.0 5.25 5.5 5.75 6.0 6.25 6.50 6.75 7.0 7.25 7.5 

5th (dB) -15.8 -12.8 -9.7 -7.2 0.0 5.4 9.7 0.4 -5.9 -8.1 -11.0 

6*ft(Hz) 5.25 5.5 5.75 6.0 6.25 6.50 6.75 7.0 7.25 7.5 7.75 

6t/l(dB) -12.8 -9.7 -7.2 0.0 5.4 9.7 0.4 -5.9 -8.1 -11.0 -12.7 

7t/l(Hz) 5.5 5.75 6.0 6.25 6.50 6.75 7.0 7.25 7.5 7.75 8.0 

7th (dB) -9.7 -7.2 0.0 5.4 9.7 0.4 -5.9 -8.1 -11.0 -12.7 -13.9 

8th (Hz) 5.75 6.0 6.25 6.50 6.75 7.0 7.25 7.5 7.75 8.0 8.25 

8*ft(dB) -7.2 0.0 5.4 9.7 0.4 -5.9 -8.1 -11.0 -12.7 -13.9 -15.6 

9tft(Hz) 6.0 6.25 6.50 6.75 7.0 7.25 7.5 7.75 8.0 8.25 8.5 

9t/l(dB) 0.0 5.4 9.7 0.4 -5.9 -8.1 -11.0 -12.7 -13.9 -15.6 -16.8 

10th (Hz) 6.25 6.50 6.75 7.0 7.25 7.5 7.75 8.0 8.25 8.5 8.75 

10tft(dB) 5.4 9.7 0.4 -5.9 -8.1 -11.0 -12.7 -13.9 -15.6 -16.8 -17.9 

lltft(Hz) 6.50 6.75 7.0 7.25 7.5 7.75 8.0 8.25 8.5 8.75 9.0 

lltft(dB) 9.7 0.4 -5.9 -8.1 -11.0 -12.7 -13.9 -15.6 -16.8 -17.9 -18.8 

Training the algorithm based upon the resonant and anti-resonant frequencies was 

a slight variation of the method just described. Ten FRF magnitude averages were com- 

puted from the same 100 FRFs, ten FRFs per average, used in the speech spectra method 

described above for a damage class. The average of 10 FRFs gave better results than just 

one, as will be discussed in Chapter IV. Next, the resonant and anti-resonant frequencies 

were extracted and vectorized from the data according to Figure 3.4 for each of the 10 

averages. The 10 resulting vectors composed of resonant and anti-resonant frequencies 

were then averaged to form a single average vector per damage class. As a result of the av- 

eraging, the resulting vector was not necessarily discretized in 0.25 Hz increments. Figure 

3.7 illustrates the training for this method. 
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Figure 3.6     Speech Spectra Method Training Diagram 
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Figure 3.7     Resonant and Anti-Resonant Frequency Method Training Diagram 

Covariances were not computed, because, in some cases, a resonant or anti-resonant fre- 

quency occurred only once for a damage class despite averaging 10 measured FRFs. This 

would correspond to a covariance of zero from one data point, which is statistically mean- 

ingless. 

Continuing with the example of diagonal 16 removed, a portion of the training output 

is provided in Table 3.5. Only the x-direction resonant frequencies are listed with the first 

column being the 2 Hz frequency intervals. The x-direction anti-resonant frequencies and 

the y-direction resonant & anti-resonant frequencies (not listed) are arranged in a similar 

fashion. Columns 2-11 in Table 3.5 are the x-direction resonant frequencies for 10 averaged 

FRFs. The final column is the mean of all 10 columns. Columns 2-11 contain the resonant 
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frequencies in 0.25 Hz increments; and, as a result of averaging, the mean of columns 2-11 

does not have 0.25 Hz discretization. 

Table 3.5     Training Output of Diagonal 16 Removal 

Hz Training Output, Averages 1-10 Mean 

4-6 0 0 0 0 0 0 0 0 0 0 0 

6-8 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 

8-10 0 0 0 0 0 0 0 0 0 0 0 

10-12 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 

12-14 0 0 0 0 0 0 0 0 0 0 0 

14-16 0 0 0 0 0 0 0 0 0 0 0 

16-18 0 0 0 0 0 0 0 0 0 0 0 

18-20 0 0 0 0 0 0 0 0 0 0 0 

20-22 0 0 0 0 0 0 0 0 0 0 0 

22-24 22.00 22.00 22.00 22.00 22.25 22.25 22.25 22.00 22.00 22.00 22.05 

24-26 24.50 24.50 24.50 24.50 24.50 24.25 24.25 24.25 24.25 24.50 24.40 

26-28 0 0 0 0 0 0 0 0 0 0 0 

28-30 0 0 0 0 0 0 0 0 0 0 0 

30-32 0 0 0 0 0 0 0 0 0 0 0 

32-34 0 0 0 0 0 0 0 0 0 0 0 

34-36 34.25 34.25 34.00 34.25 34.25 34.25 34.25 34.25 34.25 34.25 34.23 

36-38 36.75 36.75 37.00 36.75 36.75 36.75 37.00 36.75 37.00 36.75 36.83 

38-40 38.25 38.25 38.25 38.25 38.50 38.25 38.25 38.25 38.25 38.50 38.30 

40-42 0 0 0 0 0 0 0 0 0 0 0 

42-44 0 0 0 0 0 0 0 0 0 0 0 

44-46 0 0 0 0 0 0 0 0 0 0 0 

46-48 0 0 0 0 0 0 0 0 0 0 0 

48-50 49.75 49.75 49.75 49.75 49.75 49.75 49.50 49.50 49.75 49.50 49.68 

50-52 0 0 0 0 0 0 0 0 0 0 0 

52-54 53.25 53.50 53.50 53.50 53.50 53.50 53.25 53.50 53.25 53.50 53.43 

3.5    Data Variation 

The FRFs for a given damage class turned out to be quite variable. This variability 

led to the phenomenon discussed above in which a resonant and/or an anti-resonant fre- 

quency occurred only one time out of ten in a given 2 Hz frequency range or window. In 

most cases, when a resonant and/or anti-resonant frequency occurred once, the preceding 
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or subsequent 2 Hz window contained a frequency found for the corresponding resonant or 

anti-resonant frequency. 

Although this variability proved to be somewhat difficult in training the pattern 

classifiers, it is typical of real structures that are very susceptible to operating conditions. 

On the other hand, this significant variability in the training data would serve to hopefully 

accommodate any unknown, random variation sources in testing the pattern classifiers 

on the FTE using different FRF data than that used for training. It was hoped that 

an unknown, test FRF would fall into this apparent variability window encountered in 

training; therefore, the correct damage case would then be identified. Figures 3.8, 3.9, and 

3.10 shows this variation at different damage locations on the FTE. 

Baseline, Undamaged FTE 

30 
Frequency (Hz) 

Figure 3.8     FRF Variability in the FTE, Bays 1 and 2 
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Figure 3.9     FRF Variability in the FTE, Bays 3, 4, and 5 
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Figure 3.10     FRF Variability in the FTE, Bays 6, 7, and 8 
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3.6    Pattern Classifiers 

One of the pattern classifiers used was adapted from Duda and Hart (9). The Gaus- 

sian classifier used in this work is referred to as a Bayes classifier per Duda and Hart. 

Probability densities are calculated from some unknown test case, i.e., unknown damage 

class, and the probability of the unknown damage case belonging to a particular damage 

class is calculated based upon comparison to the known damage cases that were analyzed 

in pattern training. The general multivariate normal density is written as: 

P(x) = \ r«&P[-0.5(x - /i)*S"1(x - /*)] (3.17) 
(27r)2|S|2 

where 

x   = a d-component column vector 

H   = a d-component mean vector 

= £[x] (3.18) 

d   = length of the column vector 

S   = is the d-by-d covariance matrix 

=   E[(X-/I)(X-M)*] (3-19) 

E   =   the expected value operator 

If Xi is the ith component of x, /i,- is the ith component of fM, and atj is the ijth component 

of S, then 

iH   =   E[Xi] (3.20) 

<?ij EKxi-riixj-Hj)] (3.21) 

Swenson (29) showed that the measured FRF data was approximately normally dis- 

tributed (in a Gaussian manner); therefore, we assumed that to be the case in this research. 

A simply coded Gaussian classifier was used. 
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A discriminant function, c?j(x), was first calculated, as follows: 

9i{x) = -0.5(x - /^E^x - H) (3-22) 

This function represents the distance measure between the test vector, x, and the 

mean, ß{, of each damage class. This distance is known as the Mahalanobis distance, not 

the Euclidean norm. For more details, see Duda and Hart (9). The damage class with the 

largest discriminant function, i.e., the small negative value, is selected as the damage class 

present in the structure. The discriminant function was used to identify damage with the 

speech spectra method. In identifying damage with resonant and anti-resonant frequencies, 

the Euclidean norm distances were used. The test vector was compared to all known 

damage classes, and the one producing the smallest Euclidean norm distance was selected 

as the damaged FTE state. Covariances were not used because, in some cases, resonant or 

anti-resonant frequencies appeared only once in the training, as discussed previously. In 

the following chapter, the results from these pattern classifiers will be presented. 
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IV.   Damage Detection Results 

4.1 Introduction 

The FTE was tested with the pattern classifiers developed in Chapter 3. Both the 

speech spectra and the resonant frequency methods were tested using measured FTE data 

different than the data used to train the pattern classifiers themselves. This was done for 

two reasons. First, it was felt that testing the damage detection algorithm on the same 

data it was trained upon would not be a rigorous test. Second, and more importantly, it 

was suspected that the conditions the FTE operate in may change over time. There would 

be a considerable amount of time between training data collection and the actual testing 

of the pattern classifiers. It was hoped that lab environment changes would be realized 

when the damage detection algorithm was tested on new data that may differ from the 

data gathered for training. 

4.2 Resonant and Anti-Resonant Frequencies Damage Iden- 

tification Results 

The resonant and anti-resonant frequencies damage identification algorithm followed 

the process outlined in Figure 4.1. Using two accelerometer FRFs from the top of the FTE 

and arranging the resonant and anti-resonant frequencies in 2 Hz intervals from 4-54 Hz, a 

l-by-100 vector was created for an unknown FTE condition from the accelerometer data. 

The first 25 elements of this vector were composed of the x-direction accelerometer resonant 

frequencies, and elements 26-50 were made up of x-direction accelerometer anti-resonant 

frequencies. Elements 51-75, and 76-100 were composed of the y-direction resonant and 

anti-resonant frequencies, respectively. The data that resulted from the training was ar- 

ranged in an identical fashion for all damage classes. It should be noted that these matrices 

were sparse. Next, the elements of the non-zero row numbers of the test vector were found 

and compared, via the Euclidean norm, to the elements in the corresponding rows of the 

training vectors. The Euclidean norm was calculated from the differences between the test 

vector and all the training vectors' resonant and anti-resonant frequencies. In addition to 
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computing the Euclidean norms, the damage identification algorithm retained the damage 

case for each Euclidean norm calculated. The damage case with lowest Euclidean norm 

computed by the algorithm was reported to be the damage present in the structure. 

Initialize Damage ID. 
Algorithm 

Arrange Resonant and 
Anti-Resonant 

Frequencies in 2Hz 
Endows to Form a 

Test Vector f •      -I 
Load Damage Means 
of Resonant and Anti- 
Resonant Frequencies 

Found via Training 
\t 

i f     

Compare Test Vector 
of Frequencies to 
Training Data to 

D eteimine D amage 
Glass Gather Accelerometer 

uata on ui 
State vi 

urreniriis 
aSA390 

Figure 4.1      Testing Block Diagram 

To reduce computational time, the algorithm was initially tested using only one FRF 

pair. The results are presented in Table 4.1. Poor results using this approach led us to 

try using the mean of 10 test FRF pairs. This second method was far superior to those 

obtained using only one FRF pair; therefore, testing of the one FRF pair method was 

abandoned after testing only bay 1 of the FTE. The savings in computational time was 

not significant enough to sacrifice accuracy. 

The algorithm was initially trained using only the resonant frequencies to determine 

damage; then, the algorithm was trained using both resonant and anti-resonant frequencies 

to determine damage. In addition to the speech spectra method results, tables 4.2, 4.3, 

4.4, and 4.5 list results of testing the algorithm using both the resonant and anti-resonant 

frequencies, where they can be compared to the results obtained using the resonant fre- 
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quencies alone for damage detection. Thirty FRFs for each damage case were tested using 

only one FRF pair. With the exception of the speech spectra method, the results shown 

in Tables 4.3, 4.4, and 4.5 are from testing 10 averages of 10 FRFs (total of 100 FRFs per 

damage case). 

Table 4.1     Algorithm Results Using Only One FRF Pair 

Damage State Success Rate(%) 

Baseline, Undamaged 27 
Diagonal 1 Removed 100 

Diagonal 1, 50% Damaged 40 
Diagonal 2 Removed 100 

Diagonal 2, 50% Damaged 67 
Diagonal 3, Removed 100 

Diagonal 3, 50% Damaged 60 
Diagonal 4, Removed 100 

Diagonal 4, 50% Damaged 67 
Diagonals 3, and 4 Removed 33 
Diagonals 1, and 4 Removed 100 
Diagonals 4, and 2 Removed 100 
Diagonals 2, and 3 Removed 93 
Diagonals 1, and 2 Removed 93 
Diagonals 1, and 3 Removed 100 
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Table 4.2 Algorithm Results Using Resonant Frequencies Alone and Using Both Reso- 
nant & Anti-Resonant Frequencies (10 FRFs), and Speech Spectra Method 
Results (1 FRF), Bays 1 and 2 

Damage State Resonant 
Success 

Rate (%) 

Resonant and 
Anti-Resonant 

Success Rate (%) 

Speech Spectra 
Method 

Success Rate (%) 

Baseline, Undamaged 50 100 90 

Diagonal 1 Removed 100 100 100 

Diagonal 1, 50% Damaged 100 100 100 

Diagonal 2 Removed 100 100 100 

Diagonal 2, 50% Damaged 100 100 100 

Diagonal 3, Removed 100 100 100 

Diagonal 3, 50% Damaged 100 100 100 

Diagonal 4, Removed 100 100 100 

Diagonal 4, 50% Damaged 100 100 100 

Diagonals 3, and 4 Removed 100 100 100 

Diagonals 1, and 4 Removed 100 100 100 

Diagonals 4, and 2 Removed 100 100 100 

Diagonals 2, and 3 Removed 100 100 100 

Diagonals 1, and 2 Removed 100 100 100 

Diagonals 1, and 3 Removed 100 100 100 

Diagonal 5 Removed 100 100 100 

Diagonal 5, 50% Damaged 90 100 100 

Diagonal 6 Removed 100 100 100 

Diagonal 6, 50% Damaged 100 100 100 

Diagonal 7, Removed 100 100 100 

Diagonal 7, 50% Damaged 100 100 100 

Diagonal 8, Removed 100 100 100 

Diagonal 8, 50% Damaged 100 100 100 

Diagonals 7, and 8 Removed 100 100 100 

Diagonals 5, and 8 Removed 100 100 100 

Diagonals 6, and 8 Removed 100 100 100 

Diagonals 6, and 7 Removed 100 100 100 

Diagonals 5, and 6 Removed 100 100 100 

Diagonals 5, and 7 Removed 100 100 100 
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Table 4.3 Algorithm Results Using Resonant Frequencies Alone and Using Both Reso- 
nant & Anti-Resonant Frequencies (10 FRFs), and Speech Spectra Method 
Results (1 FRF), Bays 3 and 4 

Damage State Resonant 
Success 

Rate (%) 

Resonant and 
Anti-Resonant 

Success Rate (%) 

Speech Spectra 
Method 

Success Rate (%) 

Diagonal 9 Removed 100 100 100 

Diagonal 9, 50% Damaged 90 100 100 

Diagonal 10 Removed 100 100 100 

Diagonal 10, 50% Damaged 100 100 100 

Diagonal 11, Removed 100 100 100 

Diagonal 11, 50% Damaged 90 100 100 

Diagonal 12, Removed 100 100 100 

Diagonal 12, 50% Damaged 90 100 100 

Diagonals 11, and 12 Removed 100 100 100 

Diagonals 9, and 12 Removed 100 100 100 

Diagonals 10, and 12 Removed 100 100 100 

Diagonals 10, and 11 Removed 100 100 100 

Diagonals 9, and 10 Removed 0 100 100 

Diagonals 9, and 11 Removed 100 100 100 

Diagonal 13 Removed 100 100 100 

Diagonal 13, 50% Damaged 60 100 100 

Diagonal 14 Removed 100 100 100 

Diagonal 14, 50% Damaged 100 100 100 

Diagonal 15, Removed 100 100 100 

Diagonal 15, 50% Damaged 100 100 100 

Diagonal 16, Removed 100 100 100 

Diagonal 16, 50% Damaged 80 100 100 

Diagonals 15, and 16 Removed 100 100 100 

Diagonals 13, and 16 Removed 100 100 100 

Diagonals 14, and 16 Removed 100 100 100 

Diagonals 14, and 15 Removed 100 100 100 

Diagonals 13, and 14 Removed 100 100 100 

Diagonals 13, and 15 Removed 100 100 100 
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Table 4.4 Algorithm Results Using Resonant Frequencies Alone and Using Both Reso- 
nant & Anti-Resonant Frequencies (10 FRFs), and Speech Spectra Method 
Results (1 FRF), Bays 5 and 6 

Damage State Resonant 
Success 

Rate (%) 

Resonant and 
Anti-Resonant 

Success Rate (%) 

Speech Spectra 
Method 

Success Rate (%) 

Diagonal 17 Removed 100 100 100 

Diagonal 17, 50% Damaged 10 100 100 

Diagonal 18 Removed 100 100 100 

Diagonal 18, 50% Damaged 100 100 100 

Diagonal 19, Removed 100 100 100 

Diagonal 19, 50% Damaged 100 100 100 

Diagonal 20, Removed 100 100 100 

Diagonal 20, 50% Damaged 80 100 100 

Diagonals 19, and 20 Removed 100 100 100 

Diagonals 17, and 20 Removed 100 100 100 

Diagonals 18, and 20 Removed 100 100 100 

Diagonals 18, and 19 Removed 100 100 100 

Diagonals 17, and 18 Removed 100 100 100 

Diagonals 17, and 19 Removed 100 100 100 

Diagonal 21 Removed 100 100 100 

Diagonal 21, 50% Damaged 70 100 100 

Diagonal 22 Removed 100 100 100 

Diagonal 22, 50% Damaged 80 100 100 

Diagonal 23, Removed 100 100 100 

Diagonal 23, 50% Damaged 100 100 100 

Diagonal 24, Removed 100 100 100 

Diagonal 24, 50% Damaged 80 100 100 

Diagonals 23, and 24 Removed 100 100 100 

Diagonals 21, and 24 Removed 100 100 100 

Diagonals 22, and 24 Removed 100 100 100 

Diagonals 22, and 23 Removed 100 100 100 

Diagonals 21, and 22 Removed 100 100 100 

Diagonals 21, and 23 Removed 100 100 100 
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Table 4.5 Algorithm Results Using Resonant Frequencies Alone and Using Both Reso- 
nant & Anti-Resonant Frequencies (10 FRFs), and Speech Spectra Method 
Results (1 FRF), Bays 7 and 8 

Damage State Resonant 
Success 

Rate (%) 

Resonant and 
Anti-Resonant 

Success Rate (%) 

Speech Spectra 
Method 

Success Rate (%) 

Diagonal 25 Removed 90 100 100 

Diagonal 25, 50% Damaged 0 100 100 

Diagonal 26 Removed 100 100 100 

Diagonal 26, 50% Damaged 70 100 100 

Diagonal 27, Removed 100 100 100 

Diagonal 27, 50% Damaged 0 50 100 

Diagonal 28, Removed 100 100 100 

Diagonal 28, 50% Damaged 100 100 100 

Diagonals 27, and 28 Removed 100 100 100 

Diagonals 25, and 28 Removed 100 100 100 

Diagonals 26, and 28 Removed 100 100 100 

Diagonals 26, and 27 Removed 100 100 100 

Diagonals 25, and 26 Removed 100 100 100 

Diagonals 25, and 27 Removed 100 100 100 

Diagonal 29 Removed 100 100 100 

Diagonal 29, 50% Damaged 80 100 100 

Diagonal 30 Removed 20 100 100 

Diagonal 30, 50% Damaged 100 100 100 

Diagonal 31, Removed 100 100 100 

Diagonal 31, 50% Damaged 100 100 100 

Diagonal 32, Removed 100 100 100 

Diagonal 32, 50% Damaged 80 100 100 

Diagonals 31, and 32 Removed 100 100 100 

Diagonals 29, and 32 Removed 100 100 100 

Diagonals 30, and 32 Removed 100 100 100 

Diagonals 30, and 31 Removed 100 100 100 

Diagonals 29, and 30 Removed 100 100 100 

Diagonals 29, and 31 Removed 80 100 100 
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As Tables 4.2 through 4.5 illustrate, using both anti-resonant and resonant frequen- 

cies improved damage detection accuracy. Furthermore, the results indicate that the mis- 

diagnosed damage states were spread uniformly throughout the structure. In other words, 

the detection algorithm had about the same accuracy regardless of the bay that was dam- 

aged. Damage states near the top of the FTE were expected to be less detectable than 

those near the bottom, because there is less strain energy near the top. The baseline, 

undamaged configuration is only 50% accurate with the resonant frequency method. This 

result is undesirable and eliminates the resonant frequency method from consideration for 

accurate, FTE damage detection. 

It was previously mentioned that lab conditions would be examined. It was observed 

upon initial testing that the baseplate bolts (see Figure 2.2) were loose. Damage detection 

results improved significantly upon simply tightening the bolts. No other adverse lab 

conditions were found in testing. 

Additional damage detection tests were performed using synthetic training data and 

tested with measured FRF data. The results are shown in Table 4.6. The FEM generated 

data was obtained from the work of Jones (17). 

Table 4.6     Algorithm Results Using FEM Generated Training Data 

Damage State Success Rate(%) 

Baseline, Undamaged 50 
Diagonal 1 Removed 100 

Diagonal 1, 50% Damaged 0 
Diagonal 2 Removed 0 

Diagonal 2, 50% Damaged 0 
Diagonal 3, Removed 0 

Diagonal 3, 50% Damaged 70 
Diagonal 4, Removed 0 

Diagonal 4, 50% Damaged 0 
Diagonals 3, and 4 Removed 0 
Diagonals 1, and 4 Removed 100 
Diagonals 4, and 2 Removed 100 
Diagonals 2, and 3 Removed 40 
Diagonals 1, and 2 Removed 100 
Diagonals 1, and 3 Removed 100 
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Results from the other FTE sections were comparable to those seen in Table 4.6. The poor 

performance indicated by these results can probably be attributed to both inaccuracy of 

the FEM itself and low discrete data resolution. 

4.3 Speech Spectra Method Damage Identification Results 

Our pattern classifier testing began with an unsuccessful attempt to duplicate the 

results obtained by Swenson (29). Swenson used 10 triangular filters per FRF, yielding a 

feature vector 20 elements long (10 filters X 2 FRFs). 

It was decided to increase the resolution associated with the speech spectra method 

by doubling the number of triangular filters. An accuracy rate better than the one obtained 

using resonant and anti-resonant frequencies was desired. An accuracy of 90% was achieved 

in this scenario for the baseline, undamaged configuration, and 100% accuracy was achieved 

for the 112 remaining damage states, as seen in Tables 4.2, 4.3, 4.4, and 4.5. 

The speech spectra method was also trained with FEM generated, synthetic data 

and tested with measured FRF data. For these results, consult Jones (17). 

4.4 Summary of Results 

It was shown that the following damage configurations could be correctly identified 

by the FTE in addition to the undamaged, baseline configuration: 

• Complete removal of a diagonal 

• Removal of a diagonal and replacement with a partially damaged diagonal 

• Complete removal of any two diagonals in one bay 

Better damage detection algorithms and better understanding of FTE operation 

were realized in this research. Both the speech spectra and the resonant/anti-resonant 

frequencies methods were nearly 100% accurate. However, the latter method proved to be 

more desirable despite it requiring more computational time, because it always correctly 

identified the baseline, undamaged configuration.  It was also shown that the boundary 

4-9 



conditions, i.e., baseplate conditions, impacted damage identification accuracy. Finally, 

the addition of the anti-resonance frequencies to the algorithm provided the information 

needed to obtain near 100% accuracy. 

In testing the pattern classifier with FEM generated data, results were poor. This 

can be attributed to poor data point discretization resolution and FEM inaccuracies, as 

discussed previously. Jones (17) was able to obtain 100% accuracy in the case of complete 

diagonal removal, but 0% accuracy was achieved in the cases of 50% damage. Results were 

mixed for the FEM trained pattern classifier used in this work, as seen in Table 4.6. 
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V.    Conclusions and Recommendations 

5.1     Conclusions 

Several easily programmable algorithms were created that correctly identified dam- 

age in a real structure. These algorithms were based on analysis tools from a variety of 

disciplines, including structural dynamics, speech recognition, and modal analysis tech- 

niques. They extracted vectors from FRF magnitude spectra that were shown to vary 

with damage. 

A major drawback of this work was its inherent reliance on a limited number of 

damage states. Ideally, a damage detection scheme should be able to correctly identify 

any damage state, the extent of the damage, and the damage location in the structure. 

To accomplish such detailed damage detection on the FTE, all degrees of freedom would 

have to be measured, which would require at least 192 accelerometers over the structure. 

A FTE configuration with this many accelerometers would probably be an unacceptable 

design for the space environment in which a FTE like structure is intended to operate, since 

additional payload would have to be sacrificed for sensor weight and associated hardware. 

Additionally, most Finite Element Modeling updating tools tend to change all the 

stiffness matrix values a little, instead of a few significant changes, by updating the assem- 

bled matrix itself rather than the physical parameters of the model. Friswell (11) stated 

that the case of a few significant changes would be typical after damage was introduced 

into the original, undamaged, baseline, physical structure. Thus, the true nature of the 

damage would be difficult to detect. This would further hinder a space operator's ability 

to remotely detect damage. 

Near 100% accuracy was obtained with two of the damage detection algorithms gener- 

ated in this work. Anti-Resonant frequencies were shown to provide excellent results when 

used with the resonant frequencies. Despite taking steps to eliminate leakage and aliasing 

in the experimental data-acquisition set-up, these may have caused errors in addition to 

the sources stated previously. An additional source of error that should be considered in 
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any future FTE research is the FTE baseplate mount.   A more secure mounting design 

should be implemented. 

Results from training with FEM generated data are not encouraging. Only complete 

diagonal removal was successfully diagnosed by Jones (17) and no consistent results were 

obtained in this work with FEM trained pattern classifiers. 

5.2    Recommendations 

Future research on the FTE or any other structure should consider using anti- 

resonant frequencies in their damage detection schemes. They were shown to be effec- 

tive damage indicators in this work, because they vary by measurement location (unlike 

resonant frequencies, that are global to the structure). More sensors could be used to 

determine additional anti-resonant frequencies in a structure, which in turn would provide 

insight into more damage states. 
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Appendix A.   Matlab Code 

A.l    Speech Spectra Damage Detection Training Matlab Files 

'/. Matlab File:   gtraintf.m 
y#********************************************************************** 

'/, Created by:  Capt Arb 

7. Date: 12 Aug 97 

'/, Modified by: Capt Gaeta 

'/. Date: 1 Nov 99 

'/, This file created the training features from the raw FRF data. 

'/. This file used during training and not during the damage ID process. 

'/. The raw data is passed thru triangular filters producing feature sets. 

'/, The output of these filters are known as Mel-Frequency Spectral Coefficients, 

'/, or MFSC's.  These MFSC's are then projected onto a set of orthogonal cosines 

•/. to produce Mel-Frequency Cepstral Coefficients, MFCC's. 

function [train.ftrs]=gtraintf(memberlist); 

train.f trs= [] ; 

for k=l:memberlist; 

nextmember=k-l; 

nextmember 

filename=['tdmg' int2str(nextmember)]; 

eval(['load ' filename]); 

eval(['xdata=y36' int2str(nextmember) ';']); 

eval(['ydata=x33' int2str(nextmember) ';']); 

xdata=[(k-l)*ones(size(xdata,l),1) 10*logl0(xdata)]; 

ydata=[(k-l)*ones(size(ydata,l),l) 10*logl0(ydata)]; 

xftrs=tfiltdct(xdata); 

yftrs=tfiltdct(ydata); 

ftrs=[xftrs yftrs(:,2:size(yftrs,2))]; 

train.ftrs=[train_ftrs;ftrs]; 

end; 

train.ftrs=[train.ftrs(:,1:21)   train.ftrs(:,23:42) ] ; 
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'/. Matlab File: tfiltdct.m 

•/********************************************************************** 

function features=tfiltdct(labelled_data); 

•/. 

•/. Author:  Capt Al Arb 

7. Date:    8 Aug 97 

'/, Modified: Capt Doug Gaeta 

'/. Date:    1 Sept 99 

'/. 

'/. This function performs passes the input data (assumed to be a spectrum) 

'/. through a bank of triangular filters.  The triangular filters are spaced 

X linearly from 0-50 Hz with 50'/. overlap.  From there they are spaced 

'/. logaritmically.  The gain of each is 1. 

7. 
'/. The output of the filter is the sum of the weighted spectrum and is 

•/. called the Mel-Frequency Spectral Coefficient (MFSC) .  The vector of 

'/. MFSC's is then projected onto a set of orthogonal cosines through the 

'/. DCT to produce Mel-Frequency Cepstral Coefficients. 

•/. 

•/. The data is assumed to be labelled with the first column being 

'/. class label, and the rest of each row the specturm. 

V. 
'/. The code can be easily modified to allow for some parameters to be passed in 

'/, instead of hard coded, (e.g. melSpacing, linear cutoff frequency, fs, 

'/. etc.) 

size(labelled_data,2); 

data=labelled_data(:,2:size(labelled_data,2)-l); 

size(data); 

fs=200; 

melSpacing=50; 

mels=melSpacing; 

7. 
7. convert digital frequency fs/2 to mel scale 

7. 
maxmels=2595*logl0(l+fs/50/2); spectsize=400; k=l; 

7. 
7. find center frequencies on mel scale for filters 

7. 
while mels(k)<maxmels, 
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mels=[mels mels(k)+melSpacing]; 

k=k+l; 

end; 

melsize=size(mels); 

'/. 

'/. Convert back to analog frequency 

'/, Finding lower, center, and upper frequencies for filters 

*/. 
fc=((10.-(mels./2595))-l).*50; 

lower=[0 fc(l:k-2)]; 

center=fc(l:k-l); 

upper=fc(2:k); 

numfilters=k-l; 

'/, There may only be k-2 complete filters 

filtweights=zeros(numfilters,spectsize); 

Define triangular filters: 

| 1 

I A I 
1 \J   \ I 

I   A I 
2 I / \  1 

•/. 
I A I 

numf ilters I  / \-l 

for 1=1:numfilters 

for k=l:spectsize, 

if ((k >= (lower(l)/(fs/2)»spectsize))&(k <= (center(l)/(fs/2)»spectsize))) 

filtweights(1,k)=((k/spectsize)*(fs/2)-lower(1))/(center(1)-lower(1)); 

elseif ((k > center(l)/(fs/2)*spectsize)&(k <= upper(l)/(fs/2)»spectsize)) 

filtweights(1,k)=(upper(1)-(k/spectsize)*(fs/2))/(upper(1)-center(1)); 

end; 

end; 

end; 

7. 
'/. Examine last filter.  If it's not complete enough (i.e., only part of it 

'/, may be below fs/2) , then we discard the last filter. 

'/. 
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if filtweights(numfilters,spectsize)>0.1 

numfilters=numfilters-1; 

filtweights=filtweights(l:numfilters,:); 

end; 

•/. 

'/, a is a normalizing factor to ensure the gain is 1 for each filter 

•/. 

a=sum(filtweights')'; 

•/. 

'/, initialize new feature matrix 

•/. 

features=zeros(size(data,1),numfilters); 

'/. Calculate MFSC's 

*/. 
mfb=data*(filtweights.*[a."(-l)*ones(l,size(filtweights,2))])'; 

7. 
•/. Do DCT 

•/. 
features=dctarb(mfb); 

'/.features 

features=[labelled_data(:,1)   features]; 

'/, Matlab File:   dctarb.m 

function b=dctarb(a,n) 

'/, Discrete cosine transform. 

•/. 

'/, Y = DCT(X) returns the discrete cosine transform of X. 

'/, The vector Y is the same size as X and contains the 

*/, discrete cosine transform coefficients. 

•/. 

'/. Y = DCT(X.N) pads or truncates the vector X to length N 

'/, before transforming. 

7. 
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'/. If X is a matrix, the DCT operation is applied to each 

'/, column.  This transform can be inverted using IDCT. 

*/. 

•/. See also: FFT.IFFT, and IDCT. 

•/. Author(s): C. Thompson, 2-12-93 

'/, Copyright (c) 1984-94 by The MathWorks, Inc. 

•/. Revision: 1.8 $ $Date: 1994/01/25 17:58:57 $ 

'/, Revised by Al Arb to conform to DCT operation in HTK 

'/. 

'/, References: 

'/. Jae S. Lim, "Two-dimensional Signal and Image Processing", 

'/, pp. 148-162.  Implements an even-symmetrical DCT. 

'/. Jain, "Fundamentals of Digital Image Processing", pp. 150-153. 

'/. Wallace, "The JPEG Still Picture Compression Standard", 

'/, Communications of the ACM, April 1991. 

'/, The input to this file are the MFSC's and the output is a vector 40 units long 

•/. known as MFCC's. 

error(nargchk(1,2,nargin)); 

if min(size(a))==l 

if size(a,2)>l 

do_trans = 1; 

else 

do_trans = 0; 

end 

a = a(:); 

else 

do_trans = 0; 

end if nargin==l, 

n = size(a,1); 

end m = size(a,2); 

'/, Pad or truncate a if necessary 

if size(a,l)<n, 

aa = zeros(n,m); 

aa(l:size(a,l),:) = a; 

else 

aa = a(l:n,:); 

end 
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cos (((pi*l/N)*(N-0.5)) ... cos(((pi*N/N)*(N-0.5))I 

•/. 

'/. HTK defines DCT as: 

'/. 

'/. c_i=sqrt(2/N) sum(j=l:N) {m_j*cos(((pi*i)/N) * (j-0.5))} 

•/. 

•/. Thus, c=sqrt(2/N).*(aa*C0SMTRX) 

7. 
7. where C0STMTRX= I 1 

•/, | cos(((pi*l/N)*(l-0.5)) ... cos(((pi*N/N)*(l-0.5))l 

•/, | cos(((pi*l/N)*(2-0.5)) ... cos(((pi*N/N)*(2-0.5))l 

7. 

•/. 

7. 

7. 
7, and N= the number of coefficients/elements in X 

7. 

N=size(aa,2); 

C0SMTRX=cos((pi/N).*[ones(N,l)*[l:N]].*[[l:N]'*ones(l,N)-0.5]); 

b=sqrt(2/N).*(aa*COSMTRX); 

7. original stuff: 

7. if rem(n,2)==l, 7. odd case 

'/,  Form intermediate even-symmetric matrix. 

7, y = zeros(2*n,m); 

7. y(l:n,:) = aa; 

7. y(n+l:n+n,:) = flipud(aa); 

7. Perform FFT 

7. yy = fft(y); 

7. Compute DCT coefficients 

7. ww = exp(-sqrt(-l)*(0:n-l)*pi/(2*n)).'; 

7. b = ww(: ,ones(l,m)) .*yy(l:n, :); 

7. else */, even case, courtesy of Steven L. Eddins 

7. Re-order the elements of the columns of x 

7. y = [ aa(l:2:n,:); aa(n:-2:2,:) ]; 

7. Compute weights to multiply DFT coefficients 

7. ww = 2*exp(-sqrt(-l)*(0:n-l)'*pi/(2*n)); 

7. W = ww(: ,ones(l,m)); 

7. Compute DCT using equation (5.92) in Jain 
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'/. b = W . * f f t (y) ; 

X end 

if isreal(a), b = real(b); end if do.trans, b = b.'; end 

•/,********************************************************************** 

'/, Matlab File: gtrain.m 

'/,********************************************************************** 

'/. Baseline Gaussian Classifier. 

'/. Created by:  CPT Pellissier. 

X Modified by: Capt Arb and Capt Gaeta 

X Date: 1 Nov 99 

X This script uses a Gaussian Classifier with a common 

X (but full) covariance matrices for each class. 

X This file is used for training in the speech spectra method. 

X The input to this file is the output of gtraintf.m, i.e., the Mel-Frequency 

X Cepstral Coefficients. The outputs are the damage class means and the covariances. 

function [trainMean,sigma] =gtrain(tdata) ; 

X initialization 

data=tdata; clear tdata; 

[dataRow.dataCol] = size(data); 

numTrainClasses = max(data(: ,1))+1;  X number of training classes 

features = data(:,2:dataCol); 

trainClasses = 0:numTrainClasses-l; 

X Compute the class means and covariance from the training set 

trainMean = zeros(numTrainClasses,dataCol-l); 

sigma = zeros(dataCol-1); 

for i = 1:numTrainClasses, 

lineNumbers = find(data(:,1) == trainClasses(i)); 

numberLines = length(lineNumbers); 

if numberLines > 1 

trainMean(i,:) = mean(features(lineNumbers,:)); 

else 

trainMean(i,:)=features(lineNumbers,:); 

end; 

end; 

sigma=diag(diag(cov(features))); 

save c:\gaeta\damageid\sigtrm5.mat; 
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A.2    Speech Spectra Damage Detection Testing Matlab Files 

'/. Matlab File: readddmg.m 

•/,*+******************************************************************** 

'/. This file executes the entire damage ID process. It starts by 

'/. loading the output of the training, sigmatrm.mat which contain 

'/, the variables sigma and trainmean.  Then it 

'/. collects data on the current state of the truss via SA390 and mfile 

•/. readtest. After that the data is reduced from [1X400] to a [1X40] 

*/. via triangular filtering.  This is done with gentest file that 

7. contains the filtering process.  From there, a statiscal process 

'/, is executed that determines the damage class from the feature set. 

clear all 

load C:\gaeta\damageid\sigtrm*.mat 

'/, this .mat file contains the variables 

'/. sigma and trainmean, which are the covariances and means for all 113 damage states. 

[cO,dO]=readtest; 

'/. Gathers FRF data from current FTE state. 

test=gentest(cO,dO); 

'/. 

gtest(trainHean,sigma,test); 

'/, Matlab File: readtest.m 

•/,********************************************************************** 

'/, Created by Capt Swenson 

'/, Modified by Capt Gaeta 

•/. Date: 1 Sep 99 

'/. This file initializes the SA 390 and converts the two trace files 

'/, generated from accelerometer at nodes 33 (X) and node (36) into MATLAB 

'/, format-traceA.trc and traceB.trc. 

function [cO,dO]=readtest(); c = ddeinit('sd390','COMMAND'); 

cr = ddeexec(c,'CTRL AVGR START'); c = ddeinit('sd390','STATUS'); 

cr = ddereq(c.'INFO'); while fix(cr/128) == 0 

cr = ddereq(c.'INFO'); 

pause(1) 

end c = ddeinit('sd390','COMMAND'); 
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er = ddeexec(c,'SAVEtrcAc:\gaeta\damageid\traceA.trc'); pause(l) 

er = ddeexec(c,'SAVE trcB c:\gaeta\damageid\traceB.trc'); pause(l) 

fid=fopen('c:\gaeta\damageid\traceA.tre'); 

status=fseek(fid,676,0); [A,count]=fread(fid,'float'); 

size(count); status=fclose('all'); 

fid=fopen('c:\gaeta\damageid\traceB.trc'); 

status=fseek(fid,676,0); [B,count]=fread(fid,'float'); 

status=fclose('all'); cO=B'; dO=A'; 

•/,********************************************************************** 

'/, Matlab File: gentest.m 

•/,********************************************************************** 

*/. 

'/. Created by Capt Gaeta 

•/. Date: 1 Sep 99 

'/, This file takes the raw, unknown, FRF magnitude data, and produces the 

'/. MFCC's as a result of both the filtering and discrete cosine transform processes. 

function [test_ftrs]=gentest(xdata,ydata); 

test_ftrs=[] ; 

xdata=[0 10*logl0(xdata)] ; ydata=[0 10*logl0(ydata)] ; 

xdata=[xdata; xdata] ; ydata=[ydata ; ydata] ; 

xftrs=tfiltdct(xdata); yftrs=tfiltdct(ydata); 

•/. 

test_ftrs=[xftrs yftrs(:,2:size(yftrs,2))]; size(yftrs,2); 

test_ftrs=[test_ftrs(l,l:21) test_ftrs(l,23:42)]; 

■/,********************************************************************** 

'/. Matlab File: gtest.m 

•/,********************************************************************** 

'/, Baseline Gaussian Classifier. 

'/, Created by: CPT Pellissier. 

•/, Modified by: Capt Gaeta 

'/, Date: 1 Sep 99 

'/, This script uses a Gaussian Classifier with a common 

'/, (but full) covariance matrices for each class. 

'/. 

function result=gtest(trainMean,sigma,test_ftrs); 

testData = test_ftrs(:,2:length(test_ftrs)); 

'/. Classify 

'/. trainMean is a [number of damage cases X 40] size matrix, i.e., currently, 
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'/. 113 unique damage cases by 40 feature vectors.  The upper index on the below for loop 

'/. shall always be the total number of damage cases. 

for i=l: size (trainMean.l),'/.returns number of rows, which is equal to number of damage cases-33 

g(i,1)=-(0.5)*1/(mean(diag(sigma)))*(testData-trainMean(i,:))*(testData-trainMean(i,:))'; 

end; 

[maxg.classlndex] =max(g); 

member = classlndex-l; 

if member<=56 

load c:\gaeta\damageid\classl.mat; 

damage=classl(member*14+l:(14*(member+l))); 

damage 

end; 

if member>56 

load c:\gaeta\damageid\class2.mat; 

damage=class2((member-57)*14+l:(14*((member-57)+l))); 

damage 

end; 

A-10 



A.3    Resonant & Anti-Resonant Frequencies Damage Detection Train- 

ing Matlab Files 

'/. Matlab File: gaetal.m 

•/,********************************************************************** 

'/. Created by: Capt Gaeta 

*/. Date: 1 Dec 99 

'/. This file loads the raw FRF data, takes the mean of 10 FRF's, and sends it 

'/. to a second m-file to extract the resonant and anti-resonant frequencies for 

'/,  both accelerometers. 

clear; 

for i=l:14; 

eval(['load f:\readtrng\sectionl\tdmg'int2str(i)] ); 

eval(['x=x33' int2str(i) ';']) 

eval(['y=y36' int2str(i) ';']) 

for j=0:9; 

xav(j+1,:)=mean(x(j*10+l:(j+1)*10,:)); 

yav(j+l,:)=mean(y(j*10+l:(j+l)*10,:)); 

end; 

size(xav) ; 

clear x; 

clear y; 

x=xav; 

y=yav; 

[wp,wz,peakvect,valleyvect,polemag,polefreq,zeromag,zerofreq]=arb2(x,i,1); 

[wp,wz,peakvect,valleyvect,polemag,polefreq,zeromag,zerofreq]=arb2(y,i,2); 

i 

end; 

'/. Matlab File: arb2.m 

'/,********************************************************************** 

*/. Created by: Al Arb 

'/. Modified by: Capt Gaeta 

•/, Date: 1 Dec 99 

'/, This file extracts the resonant & anti-resonant frequencies for the x and y 

'/. acclerometers. 

•/. The optimal value of jitter/window length is 5, this value picks up local peaks & valleys. 

'/. N (number of data points) of 241 corresponds to cutoff FRF frequency of 60Hz. 

'/. input xory is used to distinguish between accel. measurements in the x or y direction, 

'/, xory of 1 corresponds to x, xory of 2 corresponds to y. 
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function [wp.wz,peakvect,valleyvect,polemag,polefreq.zeromag.zerofreq]... 

=get_formants(magspect,class,xory); 

jitter=5; 

N=241; 

frequency=linspace(0,60,241)'; 

wp=frequency; wz=frequency; 

len=length(wp); magspect=magspect'; 

magspect=10*logl0(magspect); 

'/. input data, magspect, is composed of data up to 100Hz. 

'/. wp(0-60Hz) will be composed of the frequencies corresponding to the peaks. 

'/. wz(0-60Hz) will be composed of the frequencies corresponding to the valleys. 

'/. beyond 60Hz a typical FRF taken from the FTE has lots of noise. 

'/. 

•/. assume magspect=10*logl0(abs(spect)), i.e., power domain 

7. 

numframes=length(magspect(1,:)); 

peakvect=magspect; 

valleyvect=magspect; 

count=0; '/. initialize count 

ticker=0; 

for F=l:numframes 

for j=jitter+l:N-jitter 

ticker=ticker+l; 

[peak, peakbin]=max((magspect(j-j itter:j +j itter,F))); 

'/. defined variable peakbin, retains the index where the max was found 

peak=peak(l); 

peakbin=peakbin(l); 

count=count+l; 

if peakbin==l, 

peakvect(j-jitter+l:j+jitter,F)=-1000*ones(2*jitter,1); 

wp(j-jitter+1:j+jitter,F)=-1000*ones(2*jitter,1); 

'/, above sets peakvect equal to -1000 if the peak occured in the first 

'/, element analyzed 

elseif peakbin == 2*jitter+l, 

peakvect(j-jitter:j+jitter-l,F)=-1000*ones(2*jitter,1); 
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wp (j-jitter:j+jitter-l,F)=-1000*ones(2*jitter,1); 

'/, above sets peakvect equal to -1000 if peak occured in the last 

'/, element analyzed in the max statement above. 

else 

peakvect(j-jitter:j-jitter+peakbin-2,F)=... 

-1000*ones(peakbin-1,1); 

wp(j-jitter:j-jitter+peakbin-2,F)=... 

-1000+ones(peakbin-1,1); 

peakvect(j-jitter+peakbin:j+jitter,F)=... 

-1000+ones(2*jitter+l-peakbin,l); 

wp(j-jitter+peakbin:j+jitter,F)=... 

-1000+ones(2*jitter+l-peakbin,l); 

•/.above sets peakvect equal to -1000, if the peak occurs anywhere 

'/.other than the first or last point in the 'window' 

end; 

end; 

end; 

'/, for loop F 

count; 

'/. The following is a repitition of the above to find the zeroes 

for G=l:numframes for k=jitter+l:N-jitter; 

[valley, valleybin]=min((magspect(k-jitter:k+jitter,G))); 

valley=valley(l); valleybin=valleybin(l); 

if valleybin==l, 

valleyvect(k-j itter+1:k+j itter,G)=-1000*ones(2*j itter,1); 

wz(k-j itter+1:k+j itter,G)=-1000*ones(2*j itter,1); 

elseif valleybin == 2*jitter+1, 

valleyvect(k-j itter:k+j itter-1,G)=-1000*ones(2*j itter,1); 

wz(k-j itter:k+j itter-1,G)=-1000*ones(2*j itter,1); 

else 

' valleyvect(k-j itter:k-j itter+valleybin-2,G) =... 

-1000+ones(valleybin-1,1); 

wz(k-jitter:k-jitter+valleybin-2,G)=... 
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-1000*ones(valleybin-1,1); 

valleyvect(k-jitter+valleybin:k+jitter,G)=... 

-1000*ones(2*jitter+l-valleybin,l); 

wz(k-jitter+valleybin:k+jitter,G)=... 

-1000*ones(2*jitter+l-valleybin,l); 

end; 

end; 

end; 

'/, for loop G 

•/. 

'/. the following extracts the pole locations and magnitudes from the data: 

*/. 

for h=l:numframes; tickl=0; 

'/, initialize counter variable tickl. 

for j=l:N; 

if peakvect(j,h)>-1000 

tickl=tickl+l; 

polemag(tickl,h)=peakvect(j,h); 

polefreq(tickl,h)=frequency(j,l); 

end;  '/, ends if statement 

end;  7. ends for statement with index j 

end; %  ends for statement with index h 

7. 
7, the following extracts the zero locations and magnitudes from the data. 

7. 

for m=l:numframes; tick2=0; 

7. initialize counter variable tick2. 

for p=l:N; 

if valleyvect(p,m)>-1000 

tick2=tick2+l; 

zeromag(tick2,m)=valleyvect(p,m); 

zerofreq(tick2,m)=frequency(p,l); 

end; '/,  ends if statement 

end;  7. ends for statement with index p 

end;  "/, ends for statement with index m 

if xory==l 

eval(['pmagx' int2str(class) '=polemag;']); 

eval(['pfreqx' int2str(class) '=polefreq;']); 

eval(['zmagx' int2str(class) '=zeromag;']); 

eval(['zfreqx' int2str(class) '=zerofreq;']); 

eval(['save f:\newclass\sectionl\xdmg' int2str(class) ' pfreqx' int2str(class) ' 
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pmagx'   int2str(class)   'zmagx'   int2str(class)   '  zfreqx'   int2str(class);]); 

end; 

if xory==2 

eval(['pmagy'   int2str(class)   '=polemag;']); 

eval(['pfreqy'   int2str(class)   '=polefreq;']); 

evaKC'zmagy'   int2str(class)   '=zeromag;']) ; 

eval(['zfreqy'   int2str(class)   '=zerofreq;']); 
evaKC'save f:\newclass\sectionl\ydmg' int2str(class) ' pfreqy' int2str(class) ' ... 

pmagy' int2str(class} ' zmagy' int2str(class) ' zfreqy' int2str(class);]); 

end; 

'/. Matlab File: xcheckingfrequencyranges.m 

•/,********************************************************************** 

'/. Created by: Capt Gaeta 

•/. Date: 1 Dec 99 

'/. This file is used to determine if more than one resonant frequencies exists in 

*/. a particular frequency range, i.e., is there more than one resonant frequency from 

7. 4-6.50 Hz? If yes, the input, window, will be changed until there is either one or zero 

'/. resonant frequency in a range.  Nearly identical code was written for the y accelerometer 

'/. resonant &  anti resonant frequencies, and the x accelerometer anti resonant frequencies. 

'/, The output from arb2.m is the input to this routine. 

function []=xcheckingfrequencyranges(window,zeroorl) 

for i=zeroorl:14; 

eval(['load d:\newclass\section8\xdmg'int2str(i)]); 

eval(['px=pfreqx' int2str(i) ';']) 

[A,B]=size(px); 

for j=l:10; 

'/.looping thru the 10 columns that are averaged FRF's 

for k=l:26 

'/.looping thru frequecy 4-54 Hertz 

countpx=0; 

for 1=1:A; 

'/.looping thru each row of each column 

if px(l,j)>=window*k 

if px(l,j)<window*(k+l) 

countpx=countpx+l; 

end; 

if countpx>l 

freqinquestion=window*k; 

row=l; 

column=j; 
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file=i; 

file,freqinquestion,column 

end; 

end;'/,ending 1st if 

end;'/.ending last for loop 

end;'/.ending third for loop 

end;'/.ending second for loop 

end;'/.ending first for loop. 

yt********************************************************************** 

'/. Matlab File: arrangepx.m 

•/,**♦******************************************************************* 

'/, Created by: Capt Gaeta 

'/. Date: 1 Dec 99 

'/, This file arranges the extracted x-accelerometer resonant frequencies into 

'/. ranges determined by the input variable window.  This arrangement will allow 

'/. for consistent comparison between a test vector for some unknown damage state, 

'/. and the training data.  A nearly identical file was written for the other resonant 

'/. and anti-resonant frequencies.  The input data to this file is the output of arb2.m. 

function []=arrangepx(window,zeroorl) 

for i=zeroorl:14; 

eval(['load f:\newclass\section8\xdmg'int2str(i)] ); 

'/.loading files that contain poles and zeroes-x acclerometer only 

eval(['px=pfreqx' int2str(i) ';']) 

[A,B]=size(px); 

for j=l:10; 

'/.looping thru the 10 columns that are averaged FRF's 

for 1=1:A; 

'/.looping thru each row 

for k=2:26 

'/.looping thru frequencies 4-54 Hz 

if px(l,j)>0 

if px(l,j)>=window*k 

if px(l,j)<window*(k+l) 

pxarr(k-l,j)=px(l,j); 

end; 

else 

pxarr(k-l,j)=0; 

end;'/.ending 2nd if 

end;'/.ending 1st if 

end;'/.ending last for loop 

end;'/.ending third for loop 

end;'/.ending second for loop 

eval(['pxar' int2str(i) '=pxarr;']); 

eval(['save f:\newclass\section8\pxar' int2str(i) ' pxar' int2str(i)]); 
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end;'/.ending first for loop 

'/. Matlab File: pxmeanco.m 

'/. Created by: Capt Gaeta 

'/, Date: 1 Dec 99 

'/. This file computes means and covariances of the x-accelerometer resonant 

'/. frequencies.  The output of arrangepx.m is the input.  A nearly identical file 

'/. was written for the other resonant and anti-resonant frequencies. 

function []=pxmeanco(zeroorl) 

•/. 

for i=zeroorl:14; 

frqcov=zeros([25 1]); 

frqmean=zeros([25 1]); 

'/.looping thru varying FTE config data files. 

eval(['load f:\newclass\sectionl\pxar'int2str(i)]); 

eval(['px=pxar' int2str(i) ';']); 

[rows,columns]=size(px); 

[testl,test2,test3]=find(px); 

for j=l:rows 
'/.looping thru each row where each row is a frequency band of  2 Hz 

'/. 
for k=l:10 

'/.looping thru each column where each column is a mean of 10 FRF's 

'/. 

if px(j,k)>0; 

[l,m,frequencies]=find(px(j,1:10)); 

frqmean(j,l)=mean(frequencies); 

frqcov(j,l)=cov(frequencies); 

end; 

'/. 

end;'/,k-loop 

end '/,j-loop 

eval(['xpfreqmean' int2str(i) '=frqmean;']); 

eval(['xpfreqcov' int2str(i) '=frqcov;']); 

eval(['save f:\newclass\sectionl\pxmnco' int2str(i) ' xpfreqmean' int2str(i) ' 

xpfreqcov' int2str(i)]); 

end;'/,i-loop 
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A.4    Resonant & Anti-Resonant Frequencies Damage Detection Test- 

ing Matlab Files 

'/. Matlab File: identify.m 

•/,*+******************************************************************** 

'/, Created by: Capt Gaeta 

*/, Date: 1 Dec 99 

'/. This file executes the entire damage ID process for the resonant and anti-resonant 

*/. frequencies method. As was done previously, it starts by loading the output of the training 

*/, then it gathers data on the current state of the FTE.  It gathers 10 FRF's and takes 

'/. their mean.  A statistical analysis is made to determine which member is damaged after 

'/, the test vector is arranged in a manner consistent with the training data output. 

function []=identify() 

for i=l:10; 

[x0(i,:) ,y0(i, :)]=getest; 

size(yO); 

'/. gathering 10 FRF's to take mean 

end; 

[xpolefreq,xzerofreq]=mkvectx(mean(x0(l:10,:)),1); 

[ypolefreq,yzerofreq]=mkvecty(mean(y0(l:10,:)),2); 

[xpolearr,xzeroarr,ypolearr,yzeroarr,test_vector]... 

=arrgfreq(xpolefreq,xzerofreq.ypolefreq,yzerofreq,2); 

load c:\gaeta\newclass\meancov4 

mnarr(:,107)-test.vector; 

[answer]=newtest(test.vector) 

•/. 

[maxg.classlndex] = max(answer); 

'/.classlndex returns the column where the max (answer) occurs 

member = classlndex-l; 

'/.since damage case zero is actually the first row-to get the correct 

'/.damage case subtract by 1 

if member<=56 

load c:\gaeta\damageid\classl.mat; 

damage=classl(member*14+l:(14*(member+1))); 

damage 

end 

if member>56 

load c:\gaeta\damageid\class2 .mat; 

damage=class2((member-57)*14+1:(14*((member-57)+1))); 

damage 

end; 

•/,********************************************************************** 
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'/, Matlab File: getest.m 

'/,********************************************************************** 

'/, Created by: Capt Gaeta 

'/. Date: 1 Dec 99 

'/, This file computes means and covariances of the x-accelerometer resonant 

'/. frequencies.  The output of arrangepx.m is the input.  A nearly identical file 

'/. was written for the other resonant and anti-resonant frequencies. 

X This file initializes the SA 390 and converts the two trace files 

'/. generated from accelerometer at nodes 33 (X) and node (36) into MATLAB 

'/, format-traceA.trc and traceB.trc. 

'/. This file initializes the SA 390 and converts the two trace files 

'/. generated from accelerometer at nodes 33 (X) and node (36) into MATLAB 

'/, format-traceA.trc and traceB.trc. 

function [x0,y0]=getest(); 

c = ddeinit('sd390','COMMAND'); 

er =ddeexec(c,'CTRL AVGR START'); 

c = ddeinit('sd390','STATUS'); 

cr = ddereq(c'INFO'); 

while fix(cr/128) == 0 

cr = ddereq(c.'INFO'); 

pause(1) 

end; 

c = ddeinit('sd390\ 'COMMAND'); 

cr = ddeexec(c,'SAVE trcA c:\gaeta\damageid\traceA.trc'); pause(l) 

cr = ddeexec(c,'SAVE trcB c:\gaeta\damageid\traceB.trc'); pause(l) 

fid=fopen('c:\gaeta\damageid\traceA.trc'); 

status=fseek(fid,676,0); 

[A,count]=fread(fid,'float'); size(A); 

size(count); status=fclose('all'); 

fid=fopen('c:\gaeta\damageid\traceB.trc'); 

status=fseek(fid,676,0); 

[B,count]=fread(fid,'float'); 

status=fclose('all'); yO=B'; x0=A'; 

yt********************************************************************** 

'/, Matlab File: mkvectx.m 

•/,********************************************************************** 

'/, Created by: Capt Gaeta 

'/. Date: 1 Dec 99 
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'/. This file extracts the resonant & anti-resonant frequencies for the x 

'/. acclerometer for an unknown test vector.  A nearly identical program was 

'/. written for the y-accelerometer. 

function [polefreq,zerofreq]=mkvectx(magspect,xory); 

jitter=5; 

N=241; 

frequency=linspace(0,60,241)'; size(frequency); 

wp=frequency; 

wz=frequency; 

len=length(wp); 

magspect=magspect'; 

magspect=10*logl0(magspect); size(magspect); 

numframes=length(magspect(1,:)); 

peakvect=magspect; 

valleyvect=magspect; 

count=0; '/, initialize count 

ticker=0; 

for F=l:numframes 

for j=jitter+l:N-jitter 

ticker=ticker+l; 

[peak, peakbin]=max((magspect(j-jitter:j+jitter,F))); 

'/, defined variable peakbin, retains the index where the max was found 

y, in above statement. 

peak=peak(l); 

peakbin=peakbin(l); 

count=count+l; 

if peakbin==l, 

peakvect(j-jitter+l:j+jitter,F)=-1000*ones(2*jitter,1); 

wp(j-jitter+1:j+jitter,F)=-1000*ones(2*j itter,1); 

'/, above sets peakvect equal to -1000 if the peak occured in the first 

'/, element analyzed in the max statement above. 

elseif peakbin == 2*jitter+1, 

peakvect(j-jitter:j+jitter-l,F)=-1000*ones(2*jitter,1); 

wp (j-jitter:j+jitter-l,F)=-1000*ones(2*jitter,1); 

'/. above sets peakvect equal to -1000 if peak occured in the last 

'/, element analyzed in the max statement above. 

else 
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peakvect(j-jitter:j-jitter+peakbin-2,F)=... 

-1000*ones(peakbin-1,1); 

wp(j-jitter:j-jitter+peakbin-2,F)=... 

-1000*ones(peakbin-1,1); 

peakvect(j-jitter+peakbin:j+jitter,F)=... 

-1000*ones(2*jitter+1-peakbin,1); 

wp(j-jitter+peakbin:j+jitter,F)=... 

-1000*ones(2*jitter+l-peakbin,l); 

'/.above sets peakvect equal to -1000, if the peak occurs anywhere 

'/.other than the first or last point in the 'window' 

end; 

end; 

end; '/. for F 

count; 

'/, The following is a repitition of the above to find the zeroes 

for G=l:numframes for k=jitter+l:N-jitter; 

[valley,' valleybin]=min((magspect(k-jitter:k+jitter,G))); 

valley=valley(l); valleybin=valleybin(l); 

if valleybin==l, 

valleyvect(k-j itter+1:k+j itter,G)=-1000*ones(2*j itter,1); 

wz(k-jitter+1:k+jitter,G)=-1000*ones(2*jitter,1); 

elseif valleybin == 2*jitter+1, 

valleyvect(k-j itter:k+j itter-1,G)=-1000*ones(2*j itter,1); 

wz(k-j itter:k+j itter-1,G)=-1000*ones(2*j itter,1); 

else 

valleyvect(k-jitter:k-jitter+valleybin-2,G)=... 

-1000+ones(valleybin-1,1); 

wz(k-jitter:k-jitter+valleybin-2,G)=... 

-1000+ones(valleybin-1,1); 

valleyvect(k-jitter+valleybin:k+jitter,G)=... 

-1000*ones(2*jitter+l-valleybin,l); 

wz(k-jitter+valleybin:k+jitter,G)=... 

-1000*ones(2*jitter+l-valleybin,l); 
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end; 

end; 

end; '/. for G 

*/. 

'/, the following extracts the pole locations and magnitudes from the data: 

'/. 

for h=l:numframes; tickl=0; 

'/, initialize counter variable tickl. 

for j=l:N; 

if peakvect(j,h)>-1000 

tickl=tickl+l; 

polemag(tickl,h)=peakvect(j,h); 

polefreq(tickl,h)=frequency(j,l); 

end;  '/. ends if statement 

end;  */. ends for statement with index j 

end;  '/. ends for statement with index h 

•/. 

'/. the following extracts the zero locations and magnitudes from the data. 

X 
for m=l:numframes; tick2=0; 

'/. initialize counter variable tick2. 

for p=l:N; 

if valleyvect(p,m)>-1000 

tick2=tick2+l; 

zeromag(tick2,m)=valleyvect(p,m); 

zerofreq(tick2,m)=frequency(p,l); 

end;  '/, ends if statement 

end;  '/. ends for statement with index p 

end;  '/. ends for statement with index m 

if xory==l 

pfreqx=polefreq; 

zfreqx=zerofreq; 

end 

if xory==2 

pfreqy=polefreq; 

zfreqy=zerofreq; 

end 

'/, Matlab File: newtest.m 

y,********************************************************************** 

7, Created by: Capt Gaeta 

'/. Date: 1 Dec 99 
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'/, This file statistically analyzes the unknown, test vector to the training 

*/, data to determine the damage state the FTE is currently in. 

function [answer]=newtest(test_vector); 

load c:\gaeta\newclass\meancov4.mat 

'/.contains variables mnarr and covarr both [100 by 113] 

[A,numclasses]=size(mnarr); 

•/. 

'/.numclasses is variable that is equal to the number of damage classes 

7. 
[rows,columns,v] = find(test.vector); 

b=length(rows); 

•/. 

for i=l:numclasses; 

'/. 

for j=l:b; 

if rows(j)==l; 

gathermeans(j,i)=mnarr(l,i); 

gathercovs(j,i)=covarr(l,i); 

elseif rows(j)==100; 

gathermeans(j,i)=mnarr(100,i); 

gathercovs(j,l)=covarr(100,i); 

else 

gathermeans(j,i)=mnarr(rows(j),i); 

gathercovs(j,i)=covarr(rows(j),i); 

end;'/.end if statement 

vector(j,l)=v(j,l); 

end;  '/.end for loop with index j 

'/. 

[C,D,E] = find(gathercovs(:,i)); 

gathermeans; 

F=length(C); 

answer(l,i)=-0.5*... 

(vector(:,1)-gathermeans(:,i))'*(vector(:,1)-gathermeans(:,i)); 

end;  '/.end for loop with index i 
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